小动物临床前沿(神经学专刊 - 上册)· 脑部疾病
Brain Diseases
New Frontier of Veterinary Medicine
2022 SEP | 总第 12 期
- 111 -
图1:组织学病理诊断为GME的6岁雌性未绝育金毛寻回猎犬的丘脑间连结的T2W矢状面(A)和T2W横断面(B) 和FLAIR横断面(C)。注意T2W
和FLAIR图像上的弥漫性高强度信号影响到灰质(包括皮质和深灰质)和白质,累及前脑(颞叶)和脑干(图片由伦敦大学皇家兽医学院提供)。
病因不明性脑膜脑脊髓炎(MUO)指的是一组特
发性、非感染性中枢神经系统(CNS)疾病(Talarico
and Schatzberg, 2010; Coates and Jeffery, 2014)。
值得注意的是,术语MUO与MUA(aetiology病因学)
和MUE(病因学etiology)是同义的,并且所有术语在
整篇文献中相互混杂。这组特发性非感染性脑膜炎
脑脊髓炎(NIME)分为几个亚型,包括类固醇反应性
脑膜炎-动脉炎(steroid responsive meningitis-arteritis,SRMA)、嗜酸性粒细胞性脑膜脑炎(eosinophilic meningoencephalitis,EME)、肉芽肿性脑膜
脑脊髓炎(granulomatous meningoencephalomyelitis,GME)和坏死性脑炎(necrotizing encephalitis,NE;包括坏死性脑膜脑脊髓炎(necrotizing
meningoencephalomyelitis,NME)和坏死性白质脑炎
(necrotizing leucoencephalitis,NLE))。由于SRMA和
EME具有相当明显的诊断特征,因此引入MUO一词
来涵盖只能通过组织病理学证实的NIME三种特定亚
型,包括GME、NME和NLE (Granger et al., 2010;
Talarico and Schatzberg, 2010; Coates and Jeffery,
2014)。目前还没有关于犬类MUO的总体发病率的
统计数据,但早期的报告引用了GME在犬所有中枢
神经系统疾病中的不一的发病率5-25%(Braund,
1985; Tipold, 1995)。
通常,MUO的诊断是根据动物特征、神经学检
查结果、磁共振成像(MRI)发现和脑脊液(CSF)分析
相结合得出的(Munana and Luttgen, 1998; Adamo
et al., 2007; Granger et al., 2010; Talarico and
Schatzberg, 2010; Coates and Jeffery, 2014),尽管
这些检查结果可能在不同的研究和病患之间存在很
大差异(Wong et al., 2010)。
这组疾病的诊断和治疗都使兽医面临挑战。如
果不开始恰当的治疗,这种疾病被认为是致命的
(Munana and Luttgen, 1998; Granger et al., 2010),
最近的一些研究评估了不同的治疗方式和潜在的预
后因素。
病因学
MUO 的确切病因学和病理生理学目前尚不清
楚,最新的一些理论在最近的一些文献综述中进行了
讨论 (Coates and Jeffery, 2014)。虽然 MUO 很可能
有多因素发病机制,但遗传倾向性和触发过度免疫反
应的因素的结合被认为是最重要的 (Kipar et al.,
1998; Talarico and Schatzberg, 2010; Flegel et al.,
2011; Coates and Jeffery, 2014)。可疑的诱因包括环
境因素和各类感染性抗原 (Schatzberg et al., 2005;
Greer et al., 2010; Barber et al., 2012)。结 合 这 组 疾
病对免疫抑制治疗的普遍积极反应等信息,表明了诱
发 MUO 的因素是免疫介导性疾病 (Wong et al.,
2010),因此,药物治疗的基石是免疫抑制治疗 (Kipar
et al.,1998; Talarico and Schatzberg, 2010; Coates
and Jeffery, 2014)。
临床表现
中年玩具品种犬和㹴犬易患 GME (Munana and
Luttgen, 1998; Adamo et al., 2007; Talarico and
Schatzberg, 2010); 而 NE 主要侵袭较小体型的玩具
品种和小型犬,包括巴哥犬、约克夏㹴、马尔济斯犬、
吉娃娃、北京犬、蝴蝶犬、西施犬、图莱亚尔绒毛犬和
布鲁塞尔格里芬犬 (Talarico and Schatzberg, 2010;
Cooper et al., 2014)。然而,任何品种和年龄的犬都
可 能 受 到 侵 袭 (Granger et al., 2010; Coates and
Jeffery, 2014);最近的一项研究显示,25% 诊断患有
MUO 的犬是大型犬 (>15kg; Cornelis et al., 2016b)。
通过对 173 例 GME、53 例 MUO 和 69 例 NE 的
数据统计分析,发现 GME 和 NE 的年龄分布有显著差
异;有 NE 的犬主要小于 4 岁,而 GME 的峰值年龄为
4-8 岁 (Granger et al., 2010)。在一组 60 例患 NE 巴哥
犬中 (Levine et al., 2008),诊断时的中位年龄为 18 个
月。在一组 5 例 NE 的吉娃娃 (Higgins et al., 2008) 中,
诊断时的中位年龄为 5 岁。在巴哥犬中,与深色雄性相
比,浅褐色雌性更常被诊断患有 NME (Greer et al.,
2010)。尽管普遍认为 GME 中雌性占多数 (Russo,
1979; Braund, 1985; Bailey and Higgins, 1986; Sorjonen, 1990; Munana and Luttgen, 1998),在较近期的
研 究 中,雌 雄 比 例 没 有 统 计 学 差 异 (Talarico and
Schatzberg, 2010; Granger et al., 2010; Cornelis et al.,
2016a,b)。
曾经 GME 的组织学分布有描述三种模式:多灶
型或弥散型、局灶型和眼型 (Cuddon and Smith-Maxie, 1984;Braund,1985; Sorjonen, 1990)。每一种分布型
都与不同的临床表现有关,包括多灶型 GME 犬的急性
发作和快速渐进性发展,局灶型 GME 犬的发展更隐匿
或更缓慢渐进性,以及眼型 GME 犬的视觉功能障碍的
急 性 症 状 (Braund,1985; Sorjonen,1990; Zarfoss et
al.,2006;Talarico and Schatzberg, 2009; Coates and
Jeffery, 2014)。
神经外症状很少见,但发热偶尔会伴随于中枢
神经系统炎症(Talarico and Schatzberg, 2010)。常
见的实验室检查(血常规、生化、尿分析)往往在正常
参考范围内(Thomas and Eger, 1989; Sorjonen,
1990; Tipold, 1995)。
在神经学检查中,疾病定位分类如下:a) GME
以前脑、脑干或多灶型病变为主;b) MUO 以多灶型
( 前脑、脑干 ) 或多灶型为主;或 c)NE 以前脑为主
(Granger et al., 2010; Talarico and Schatzberg,
2010; Coates and Jeffery, 2014; Cornelis et al.,
2016a)。与小型犬相比,大型犬更容易出现可识别的
意识状态下降 (Cornelis et al., 2016b)。8% 被诊断为
GME 的 犬 表 现 出 提 示 脊 髓 病 的 神 经 功 能 缺 陷
(Granger et al., 2010)。脊髓病可定位于脊髓的任何
部位,临床表现从全身性本体感受性共济失调到轻瘫
或麻痹;常见发现有脊髓过度敏感 (Griffin et al.,
2008; Wong et al., 2010; Cornelis et al., 2017a)。
诊断发现
如前所述,MUO 是一种临床诊断,可基于动物
特征、神经学检查结果、颅内横断面影像异常和脑脊
液分析获得 (Munana and Luttgen,1998; Adamo et
al.,2007; Talarico and Schatzberg, 2010; Coates
and Jeffery,2014)。Granger 等人 (2010) 系统性地回
顾了 457 例已发表的 NIME 病例 ( 包括 MUO、GME
和 NE),并制定了招募没有组织病理学诊断的 MUO
病例的指南。已确定以下四项纳入标准 : (1) 年龄大
于 6 个月的犬 ; (2) T2W MR 影像上表现为多发、单
发或弥漫性轴内高强度信号 ; (3) 脑脊液分析表现出
脑脊液细胞增多,且单核细胞 / 淋巴细胞 >50%; (4)
排除特定地理区域内常见的传染病 (Granger et al.,
2010)。如前所述,只有通过组织病理学检查才能获
得明确诊断 (Uchida et al., 2016)。
横断面影像
据报道,MRI 在检测大脑异常方面的敏感性为
94.4%,特异性为 95.5%,在肿瘤性和炎症性疾病的分
类方面也有同样高度的表现。相比之下,MRI 对脑血
管疾病分类的敏感性仅为 38.9% (Wolff et al., 2012)。
值得注意的是,在一项研究中,多达 7% 的犬 (2/25 例
,一例诊断为 GME,另一例诊断为 MUO) 在 T2W MR
图 像 中 没 有 显 示 异 常 (Talarico and Schatzberg,
2010; Granger et al., 2010),如果没有组织病理学证
据,可能会导致类似病例不被纳入前瞻性研究或回顾
性 研 究。同 样 在 CT 成 像 方 面,研 究 显 示 高 达
14%(5/36 例 犬,未 指 定 具 体 诊 断 ) 未 发 现 异 常
(Granger et al., 2010)。总的来说,影像学在识别神经
系统检查怀疑的所有炎症性异常方面的敏感性仍然
很低 (<60%; Granger et al., 2010)。此外,在一项研究
中,只有 76% 的脑脊液炎性病变病例出现 MRI 异常
(19/25 例犬 ; Lamb et al., 2005)。虽然使用横断面成
像可能有助于区分不同类型的特发性脑膜脑炎
(Talarico and Schatzberg, 2010),但目前没有关于使
用 MRI 鉴别组织病理学证实的 GME、NME 和 NLE 病
例的信息。
一项研究特别关注了 11 例组织病理学证实为
GME 的犬的 MRI 检查结果 (Cherubini et al.,2006)。
局灶型、多灶型或弥漫型的 T2W 和 FLAIR 高强度信
号分布于前脑、脑干或小脑 ( 图 1)。异常散在分布于
灰质和白质,在 T1 加权 (T1W) 图像上表现为不同强
度 信号,增强程度不同。T2W 图像通常提示白质内血
管源性水肿,脑膜强化通常不明显,即使有也很轻微
(Cherubini et al., 2006; Talarico and Schatzberg,
2010; Coates and Jeffery, 2014)。MR 影像病变的分
布 ( 位于灰质或白质 ) 与组织病理学结果一致
(Cherubini et al., 2006)。
报道的 NME 犬最常见的 MRI 异常是不对称、多
灶性和位于前脑的病变 ( 更严重的病变位于顶叶和枕
叶 );T2W、FLAIR 高强度信号 ; 通常影响皮质灰质和
皮质下白质,在 T1W 增强后图像上灰质 / 白质界限
丧失,实质病变的对比增强程度不同 (Flegel et al.,
2008; Young et al., 2009; Talarico and Schatzberg,
2010; 图 2)。然而,在一项研究中,分别有 4/18 例和
3/18 例发现小脑和脑干病变 (Young et al., 2009)。脑
膜强化也可出现,伴有肿物效应和不同程度的脑室增
大 (Coates and Jeffery, 2014)。
在 NLE 中,发现了多处不对称的大脑白质和脑干
病变 (von Praun et al., 2006)。这些病变在 T2W 和
FLAIR 上表现为典型的高强度信号,常包括多个囊性
坏死区域。在两项已报道的研究中,实质异常的对比
度增强很少 (Talarico and Schatzberg, 2010; Coates
and Jeffery, 2014)。第三项研究显示未见脑膜强化和
肿物效应,但伴有不同程度的脑室增大 (Coates 和
Jeffery, 2014; 图 3)。
已有报道 57 例犬患有不明病因性脑膜脊髓炎,
包括 3 例经组织病理学证实为 GME 的犬 (Cherubini
et al., 2006; Griffin et al., 2008; Wong et al., 2010;
Cornelis et al., 2017a)。57 例中有 36 例使用不同类型
的影像学检查结果。12 例犬单独进行了(X 线片)脊髓
造影或计算机断层扫描 (CT) 的脊髓造影;11 例犬未
发现异常,1 例犬腹侧硬膜外脊髓受压 (Wong et al.,
2010)。对 25 例犬进行了 MRI 检查,其中 3 例犬未发
现异常,6 例犬出现多灶性边界不清晰的髓内 T2W 高
强度信号,增强程度不一,在 16 例犬的髓内 T2W 高
强度信号和 T1W 等强度信号的异常中,脊髓实质病
变和 / 或覆盖脑膜的不同对比度增强 (Cherubini et
al., 2006; Wong et al., 2010; Cornelis et al., 2017a)。
其他成像方式,包括 NME 的正电子发射断层扫
描 (PET), MUO 的氟脱氧葡萄糖 PET (FDG-PET) 和
单体素质子磁共振波谱 (1H MRS),以及 GME 的经颅
超声检查结果,被研究作为诊断方式 (Eom et al.,
2008; Kang et al., 2010; Carvalho et al., 2012; Carrera et al., 2016)。然而,需要更大样本量的进一步研究
来评估这些成像方式的临床用途。
参考文献:
1. Simpson S, Syring R, Otto C. Severe blunt trauma in
dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.
2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence
of diseases of the spinalcord of cats. J Vet Intern Med
2004;18(6):851–8.
3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological
diseases in a referralhospital population between 1989 and
2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.
4. Sande A, West C. Traumatic brain injury: a review of
pathophysiology and management.J Vet Emerg Crit Care (San
Antonio) 2010;20(2):177–90.
5. Dewey C. Emergency management of the head trauma
patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.
6. Hopkins A. Head trauma. Vet Clin North Am Small Anim
Pract 1996;26�875–91.
7. Dewey C, Fletcher D. Head trauma management. In:
Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.
8. Aries M, Czrosynka M, Budohoski K, et al. Continuous
determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.
9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.
10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics
2011;8(1):39–53.
11. Tsang K, Whitfield P. Traumatic brain injury: review of
current management strategies.Br J Oral Maxillofac Surg
2012;50�298–308.
12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.
13. Fletcher DJ, Dewey CW. Spinal trauma management.
In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.
405–17.
14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,
Hopper K, editors. Smallanimal critical care medicine. 1st
edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.
15. Park EH, White GA, Tieber LM. Mechanisms of injury
and emergency care ofacute spinal cord injury in dogs and cats.
J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.
16. Olby N. The pathogenesis and treatment of acute
spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract
2010;40(5):791–807.
17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.
1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.
18. Leonard SE, Kirby R. The role of glutamate, calcium
and magnesium in secondarybrain injury. J Vet Emerg Crit Care
2002;12(1):17–32.
19. McMichael M, Moore R. Ischemia and reperfusion
injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.
20. Oyinbo C. Secondary injury mechanisms in traumatic
spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.
21. Tator C, Fehlings M. Review of the secondary injury
theory of acute spinal cordtrauma with emphasis on vascular
mechanisms. J Neurosurg 1991;75(1):15–26.
22. Dooney N, Dagal A. Anesthetic considerations in acute
spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.
23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic
management of the headtrauma patient. J Vet Emerg Crit Care
(San Antonio) 2007;17(1):5–14.
24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.
847–54.
25. Platt S, Radaelli S, McDonnell J. The prognostic value of
the Modified GlasgowComa Scale in head trauma in gods. J Vet
Intern Med 2001;15(6):581–4.
26. Levine GJ, Levine JM, Budke CM, et al. Description and
repeatability of anewly developed spinal cord injury scale for
dogs. Prev Vet Med 2009;89(1–2):121–7.
27. Olby N, De Risio L, Munana K, et al. Development of a
functional scoring systemin dogs with acute spinal cord injuries.
Am J Vet Res 2001;62(10):1624–8.
28. Smith P, Jeffery N. Spinal shock—comparative aspects
and clinical relevance.J Vet Intern Med 2005;19�788–93.
29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a
focused assessment with sonography for trauma protocol to
detect free abdominal fluid in dogs involved in motor vehicle
accidents. J Am Vet Med Assoc 2004;225(8):1198–204.
30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small
animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.
31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity
and negative predictive value for acute canine spinal trauma. Vet
Radiol Ultrasound 2006;47(6):563–70.
32. Vitale C, Coates J. Acute spinal injury. Compendium
Standards of Care: Emergencyand Critical Care Medicine
2007;9(7):1–11.
33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of
survey radiographic diagnosis of intervertebral disc protrusion in
dogs. Vet Radiol Ultrasound 2002;43(3):222–8.
34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin
North Am Small Anim Pract 2010;40(5):829–58.
35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet
Radiol Ultrasound 2009;50(3):247–52.
36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings
in thoracolumbar disc disease. J SmallAnim Pract
1994;35(7):345–50.
37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar
intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ
Vet 2009;31(3):E1–13.
38. Lewis D, Hosgood G. Complications associated with
the use of iohexol for myelographyof the cervical vertebral
column in dogs: 66 cases (1988-1990). J AmVet Med Assoc
1992;200(9):1381–4.
39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for
myelography in dogs: 182 cases(1998). J Am Vet Med Assoc
2002;220(10):1499–502.
40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability
associated with fracture or subluxation in eleven dogs. Vet
Radiol Ultrasound 2012;53(5):552–9.
41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am
Small Anim Pract 2002;32(5):1073–86.
42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper
K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.
43. Hopper K. Basic mechanical ventilation. In: Silverstein
D, Hopper K, editors. Small animal critical care medicine. 1st
edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.
44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral
blood flow, and oxygen delivery. Crit Care Med
1995;23(1):140–8.
45. Wade C, Grady J, Kramer G, et al. Individual patient
cohort analysis of the efficacy of hypertonic saline/dextran in
patients with traumatic brain injury and hypotension. J Trauma
1997;42�561–5.
46. Vassar M, Perry C, Gannaway W, et al. Analysis of
potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.
47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium
chloride/dextran for resuscitation of trauma patients undergoing
helicopter transport. Arch Surg 1991;126: 1065–72.
48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation
of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl
with added dextran: a controlled trial. J Trauma 1993;34�622–32.
49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial
for resuscitation of injured patients with 7.5% sodium chloride.
Arch Surg 1993;128�1003–11.
50. Cooper J, Myles P, McDermott F, et al. Prehospital
hypertonic saline resuscitation of patients with hypotension and
severe traumatic brain injury. JAMA 2004;291�1350–7.
51. Roberts D, Hall R, Kramer A. Sedation for critically ill
adults with severe traumatic brain injury: a systematic review of
randomized controlled trials. CritCare Med 2012;39(12):2743–51.
52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and
sulfentanil increase intracranial pressure in head trauma patients.
Anesthesiology 1992;77�416–20.
53. Lauer K, Connolly L, Schmeling W. Opioid sedation
does not alter intracranial pressure in head injured patients. Can
J Anaesth 1997;44�929–33.
54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,
and alfentanil in head trauma patients: a study on cerebral
hemodynamics. Crit Care Med 1999;27�407–11.
55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe
head injury: absence of correlation to cerebral autoregulation.
Anesthesiology 2000;92�11–9.
56. Hansen B. Acute pain management. Vet Clin North Am
Small Anim Pract 2000;30(4):899–916.
57. Pascoe P. Opioid analgesics. Vet Clin North Am Small
Anim Pract 2000;30(4):757–69.
58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res
1996;56(2):193–8.
59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care
2007;6�104–12.
60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various
concentrations. Am J Phys 1919;48�512–30.
61. Ropper A. Hyperosmolar therapy for raised intracranial
pressure. N Engl J Med 2012;367(8):746–52.
62. Brain Trauma Foundation, American Association of
Neurological Surgeons,Congress of Neurological Surgeons.
Guidelines for the management of severetraumatic brain injury. J
Neurotrauma 2007;24(1):S1–106.
63. Fink M. Osmotherapy for intracranial hypertension:
mannitol versus hypertonic saline. Continuum
2012;18(3):640–54.
64. Kaufmann A, Cardoso E. Aggravation of vasogenic
cerebral edema by multipledose mannitol. J Neurosurg
1992;77(4):584–9.
65. McManus M, Soriano S. Rebound swelling of astroglial
cells exposed to hypertonic mannitol. Anesthesiology
1998;88(6):1586–91.
66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol
and hypertonic salineon cerebral oxygenation in patients with
severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.
67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the
neurologic intensive careunit: how high is too high? J Crit Care
2006;21(2):163–72.
68. Battison C, Andrews P, Graham C, et al. Randomized,
controlled trial on theeffect of a 20% mannitol solution and a
7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.
69. Francony C, Fauvage B, Falcon D, et al. Equimolar
doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.
70. Zeng H, Wang Q, Deng Y, et al. A comparative study on
the efficacy of 10%hypertonic saline and equal volume of 20%
mannitol in the treatment of experimentallyinduced cerebral
edema in adult rats. BMC Neurosci 2010;11�153.
71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline
more efficacious thanmannitol in lethal intracranial hypertension
model. Neurol Res 2010;32(2):139–43.
72. Todd M, Cutkomp J, Brian J. Influence of mannitol and
furosemide, alone and incombination, on brain water content
after fluid percussion injury. Anesthesiology2006;105�1176–80.
73. Edwards P, Arango M, Balica L, et al. Final results of
MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6
months. Lancet 2005;365(9475):1957–9.
74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults
with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.
75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs
for preventing seizures following acute traumatic brain injury.
Cochrane Database Syst Rev 2012;(6):CD000173.
76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in
dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.
77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.
78. Hayes G. Severe seizures associated with traumatic
brain injury managed bycontrolled hypothermia, pharmacologic
coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care
(San Antonio) 2009;19(6):629–34.
79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled
trial of amantadine for severe traumatic brain injury. N Engl J
Med 2012;366�819–26.
80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.
81. Parker A, Smith C. Functional recovery from spinal cord
trauma following dexamethasone and chlorpromazine therapy in
dogs. Res Vet Sci 1976;21(2):246–7.
82. Levine J, Levine G, Boozer L, et al. Adverse effects and
outcome associatedwith dexamethasone administration in dogs
with acute thoracolumbar intervertebral disk herniation: 161
cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.
83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment
of acute spinal-cord injury. Results of the second national acute
spinal cord injury study. N Engl J Med 1990;322(20):1405–11.
84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.
Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.
85. Bracken M, Shepard M, Holford T. Administration of
methylprednisolone for 24 or
48 hours or tirilazad mesylate for 48 hours in the treatment
of acute spinal cord injury. Results of the Third National Acute
Spinal Cord Injury Randomized Controlled Trial. National Acute
Spinal Cord Injury.JAMA 1997;277(20):1597–604.
86. Nesathurai S. Steroids and spinal cord injury: revisiting
the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg
1998;45(6):1088–93.
87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of
acute spinal cord injury. Spine 2008;33(21):2260–8.
88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high
dose methylprednisolone onspinal cord function after simulated
spinal cord trauma. Vet Surg 1995;24�128–39.
89. Baltzer W, McMichael MA, Hosgood G. Randomized,
blinded, placebocontrolledclinical trial of N-acetylcysteine in
dogs with spinal cord trauma from acute intervertebral disc
disease. Spine 2008;33(13):1397–402.
90. Bains M, Hall E. Antioxidant therapies in traumatic brain
injury and spinal cord injury. Biochim Biophys Acta
2012;1822(5):675–84.
91. Hall E, Wolf D. A pharmacological analysis of the
pathophysiologicalmechanisms of posttraumatic spinal cord
ischemia. J Neurosurg 1986;64(6):951–61.
92. Ates O, Cayli S, Gurses I. Comparative neuroprotective
effect of sodium channel blockers after experimental spinal cord
injury. J Clin Neurosci 2007;14(7):658–65.
93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of
sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta
Neurochir 2005;147(4):405–12.
94. Hains B, Saab C, Lo A. Sodium channel blockade with
phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp
Neurol 2004;188(2):365–77.
95. Schwartz G, Fehlings M. Secondary injury mechanisms
of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.
96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with
an emphasis on the implications for white matter degeneration. J
Neurotrauma 2004;21�754–74.
97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist
ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.
98. Chan P. White matter injury in spinal cord ischemia:
protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.
99. Chen HS, Lipton S. The chemical biology of clinically
tolerated NMDA receptor antagonists. J Neurochem
2006;97�1611–26.
100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord
injury. Early care and treatment in a multicenter study with
gacylidine. Soc Neurosci 1999;25�1090.
101. Kwon B, Okon E, Hillyer J. A systematic review of
non-invasive pharmacologic neuroprotective treatments for
acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.
102. Sturges B, LeCouteur R. Intracranial hypertension. In:
Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.
423–9.
103. Brain Trauma Foundation T, National Association of
State EMS Officials T,National Association of EMTs. Guidelines for
prehospital management of traumatic brain injury. Prehosp
Emerg Care 2007;12(1):1–52.
104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid
sequence intubation of severely head-injured patients. J Trauma
2004;57(1):1–8.
105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects
of prolonged hyperventilationin patients with severe head injury;
a randomized clinical trial. J Neurosurg 1991;75(5):731–9.
106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:
basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg
1986;64�89–98.
107. Jeremitsky E, Omert L, Dunham C, et al. The impact of
hyperglycemia on patients with severe brain injury. J Trauma
2005;58(1):47–50.
108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs
and cats with head trauma:122 cases (1997-1999). J Am Vet
Med Assoc 2001;218�1124–9.
109. Vespa P, McArthur D, Stein N, et al. Tight glycemic
control increases metabolic distress in traumatic brain injury: a
randomized controlled within subjects trial. Crit Care Med
2012;40(6):1923–9.
110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus
conventional insulin therapy in critically ill neurologic patients.
Neurocrit Care 2010;13(3):299–306.
111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin
therapy after severe traumatic brain injury: randomized clinical
trial. Neurocrit Care 2008;9(2):159–66.
112. Dewey C. Urinary bladder management. In: Dewey
CW, editor. A practical guide to canine and feline neurology. St
Louis (MO): Elsevier Saunders; 2003. p. 419–26.
113. Bubenik L, Hosgood G. Urinary tract infection in dogs
with thoracolumbar intervertebral disc herniation and urinary
bladder dysfunction managed by manual expression, indwelling
catheterization or intermittent catheterization. Vet Surg
2008;37�791–800.
114. Smarick S, Haskins S, Aldrich J, et al. Incidence of
catheter-associated urinary tract infection among dogs in a
small animal intensive care unit. J Am Vet Med Assoc
2004;224(12):1936–40.
115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery
2004;54(3):593–7.
116. Sadaka F, Veremakis C. Therapeutic hypothermia for
the management of intracranial hypertension in severe traumatic
brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.
117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.
118. Wijayatilake D, Shepherd S, Sherren P. Updates in the
management of intracranial pressure in traumatic brain injury.
Curr Opin Anaesthesiol 2012;25(5):540–7.
119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized
multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.
120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured
patients? Appraisal of the literature using a meta-analytical
approach. Spinal Cord 2004;42(9):503–12.
121. Croce M, Bee T, Pritchard E, et al. Does optimal timing
for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.
122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of
recent clinical evidence. Spine 2006;31(11): S28–35.
123. Jeffery ND. Vertebral fracture and luxation in small
animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.
124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res
1984;189�65–76.
125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim
Hosp Assoc 2009;45�155–63.
126. Cherrone K, Dewey C, Coates J, et al. A retrospective
comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp
Assoc 2004;40�316–20.
127. Gage E, Hoerlein B. Hemilaminectomy and dorsal
laminectomy for relieving compressions of the spinal cord in the
dog. J Am Vet Med Assoc 1968;152: 351–9.
128. Seim H 3rd, Prata R. Ventral decompression for the
treatment of cervical disk disease in the dog: a review of 54
cases. J Am Anim Hosp Assoc 1982;18: 233–40.
129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in
the treatment of cervical intervertebral disk disease in small
dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc
1996;32�77–80.
130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc
1983;19�755–60.
131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small
dogs. J Vet Med Sci 2005;67�679–83.
132. McCartney W. Comparison of recovery times and
complication rates between a modified slanted slot and the
standard ventral slot for the treatment of cervical disc disease in
20 dogs. J Small Anim Pract 2007;48�498–501.
133. Levine J, Levine G, Johnson S, et al. Evaluation of the
success of medical management for presumptive thoracolumbar
intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.
134. Kent M. Intraaxial spinal cord hemorrhage secondary
to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc
2010;46(2):132–7.
135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk
extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.
136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J
2003;44(2):137–9.
137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with
intervertebral disc herniation in a dog.Vet Radiol Ultrasound
2001;43(4):319–24.
138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory
glial cell transplantation is eliable and safe in naturally occurring
spinal cord injury. J Neurotrauma 2005;22(11):1282–93.
139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with
acute spinal cord injury. Vet Surg 2012;41�437–42.
140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal
cord: 87 cases (1996-2001). J Am VetMed Assoc
2003;222(6):762–9.
141. Dewey CW. Myelopathies: disorders of the spinal cord.
In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.
142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim
Hosp Assoc 1999;35�135–46.
143. Eminaga S, Palus V, Cherubini G. Acute spinal cord
injury in the cat: causes,treatment and prognosis. J Feline Med
Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in
dogs. Part 2: Adrenal function testing and differentiating tests[J].
The Veterinary Journal, 2019, 252�105343.