9.30《小动物临床前沿》(神经学专刊-上册)VOL.12

发布时间:2022-9-30 | 杂志分类:其他
免费制作
更多内容

9.30《小动物临床前沿》(神经学专刊-上册)VOL.12

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病Brain DiseasesNew Frontier of Veterinary Medicine2022 SEP | 总第 12 期- 99 -诊断评估系统评估对创伤病畜的初步评估应着重于病畜的整体稳定性,且要特别强调呼吸和心血管系统的稳定性,对有神经创伤的患畜来说,这一点尤其重要,因为低血压、低氧血症和通气量的改变都会导致二次伤害且使结果恶化。神经系统评估为了对神经系统进行充分评估,最开始的神经系统检查应该在任何镇痛治疗开始之前而进行,最初的神经系统检查应包括评估意识、颅神经反射、躺卧状态、是否有自主运动功能(对有潜在VFL的可以行走表1:继发性损伤的机制(接上表)表2:修正格拉斯哥昏迷计量表 (modified glasgow coma scale MGCS)意识水平(level of consciousness) 脑干反射 肌动活动(motor activity)6. 偶尔会有警觉性,对环境反应灵敏6.正常的瞳孔光反射(pupillary light reflexes)和 头眼反射(oculocephalic reflex) 6... [收起]
[展开]
9.30《小动物临床前沿》(神经学专刊-上册)VOL.12
粉丝: {{bookData.followerCount}}
文本内容
第101页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 99 -

诊断评估

系统评估

对创伤病畜的初步评估应着重于病畜的整体稳

定性,且要特别强调呼吸和心血管系统的稳定性,对

有神经创伤的患畜来说,这一点尤其重要,因为低血

压、低氧血症和通气量的改变都会导致二次伤害且使

结果恶化。

神经系统评估

为了对神经系统进行充分评估,最开始的神经系

统检查应该在任何镇痛治疗开始之前而进行,最初的

神经系统检查应包括评估意识、颅神经反射、躺卧状

态、是否有自主运动功能(对有潜在VFL的可以行走

表1:继发性损伤的机制(接上表)

表2:修正格拉斯哥昏迷计量表 (modified glasgow coma scale MGCS)

意识水平

(level of consciousness) 脑干反射 肌动活动

(motor activity)

6. 偶尔会有警觉性,对环境反应

灵敏

6.正常的瞳孔光反射(pupillary light reflexes)

和 头眼反射(oculocephalic reflex) 6. 步态正常,脊柱反射正常

5. 抑郁 或神志不清,有能力做出

回应,但回应可能不恰当

5. 瞳孔光反射缓慢

和正常至减弱的头眼反射

5. 偏瘫,四肢瘫痪 或肢体活动障

4. 半昏迷,对视觉刺激有反应 4. 双侧瞳孔无缩小反应

和正常到减弱的 头眼反射 4. 卧躺不起,间歇性外展僵硬

3. 半昏迷,对听觉刺激有反应 3. 瞳孔呈针孔状 (pinpoint pupils)

和 减弱至缺失的 头眼反射 3. 卧躺不起,持续性外展僵硬

2. 半昏迷,

只对重复的伤害性刺激有反应

2. 单侧 瞳孔无放大反应

和减弱至缺失的 头眼反射

2. 卧躺不起,持续性外展僵硬,

角弓反张 (opisthotonus)

1. 昏迷,

对重复的伤害性刺激无反应

1. 双侧 瞳孔无放大反应

和减弱至缺失的 头眼反射

1. 卧躺不起, 肌肉张力低下,脊

柱反射低下或缺失

的患者在卧床状态下评估)、检查没有自主运动功能

的患者是否有浅层痛觉、检查没有完整浅层痛觉的患

者是否有深 层 痛觉、脊柱 反 射、皮 肤 躯干肌 反 射

(penniculus-reflex)、肛门张力、和会阴反射。如果

患者可以走动。且医生不怀疑患有椎体骨折或脱位

“VFL”,也可以对步态和感知能力进行评估,对所有怀

疑出现急性SCI的病畜一律都应进行脊柱的轻柔触

诊,来确定出现错位的位置(例如,“阶段性”的骨

折)、不稳定,不适,或有异响的区域。在进行神经系

统评估时,重要的是确认病人已被充分苏醒,因为休

克可以影响神经系统的状态。此外,进行彻底的卧位

骨科检查也是很重要的,这是用来排除骨科损伤作

为明显神经系统症状的一个潜在原因13,15。

每当怀疑非躺卧患畜有继发于椎体骨折或脱位

的急性脊髓损伤时,应尽量减少患畜的活动,患畜应

被固定在背板上,直到对骨折和脱位完成了最终明确

的评估13,15。

对病畜进行神经定位,并根据体征症状的严重程

度进行 分级 是必要的,修正的格 拉斯哥昏迷量表

【modified Glasgow Coma Scale - MGCS】的实用

性已经在狗身上得到了验证,被证实对评估创伤性脑

损伤的病畜十分有用,它提供了一种更为客观地去评

定临床症状改善或进展的方法,甚至还能提供预后信

息(表2)24,25。

一项回顾性研究显示,MGCS与狗在创伤后48小

时内的生存概率有着很强的相关性。

反复地神经系统评估 - 建议在初次发病后每

30-60 分钟进行一次评估,来评估治疗的临床反应

和临床症状的进展情况。目前有 3 个有效的评分系

统可用于评估与 SCI 相关的缺陷的严重程度:第一:

改良的弗兰克尔评分(Modified Frankel Score) ;第

二:14 点运动评分 (14-point Motor score) 和第三:

德 克 萨 斯 脊 髓 损伤评分 (Taxes Spinal cord injury

score )26,27 。

如果病畜只有一侧前肢反射减弱,患侧出现霍纳

综合征、泛神经反射减弱,则应怀疑臂丛神经损伤 13。

脊髓休克(spinal shock)的存在可能影响对急性 SCI

患畜的神经定位,脊髓休克导致病变尾部的节段性脊

柱反射缺失,即使反射弧保持物理的完整,但也会造

成弛缓性瘫痪(flaccid paralysis),这是由于急性 SCI

发生时,下降的脊髓上输入突然中断,人类脊柱休克

的恢复是漫长的,但在和狗和猫上的恢复要快得多,

通常在 12 至 24 小时内 28。

继发性损伤

自由基生成:

次要发生在 / 在...之后发生:

1.谷氨酸堆积

2.炎症介质的释放

3.胞质溶胶钙(cytosolic calcium)

浓度增加

4.缺血再灌注损伤

炎症介质释放

次要发生在 / 在...之后发生:

1.原发性损伤

2. 由于继发性损伤的神经元细胞损坏

丧失自主调节功能

次要发生在 / 在...之后发生:

1.原发性损伤

导致:

1.神经元细胞损伤

导致:

1.一氧化氮(nitric oxide NO)的激活和血流及

血管渗透性改变

2.炎症细胞涌入

3.凝血激活和血栓形成

导致:

1.缺血症

第102页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 100 -

影像学

系统评估

对创伤病畜的初步评估应着重于病畜的整体稳

定性,且要特别强调呼吸和心血管系统的稳定性,对

有神经创伤的患畜来说,这一点尤其重要,因为低血

压、低氧血症和通气量的改变都会导致二次伤害且使

结果恶化。

神经系统评估

为了对神经系统进行充分评估,最开始的神经系

统检查应该在任何镇痛治疗开始之前而进行,最初的

神经系统检查应包括评估意识、颅神经反射、躺卧状

态、是否有自主运动功能(对有潜在VFL的可以行走

对神经系统以外的评估

与任何外伤病人一样,影像学检查应包括胸片以

排除肺挫伤、气胸和其他胸部或肺部创伤,以及腹部

影像学检查。理想情况下,还可以进行额外的诊断

(比如说重点对创伤部位进行超声检查)以排除器官

骨折和腹腔积液(如血性腹膜、尿性腹膜、化脓性腹

膜炎)29,30。

对颅内以及脊柱的评估

TBI小动物患者的颅内成像适用于,第一:对进取

的医疗管理没有反应的患者、第二:对治疗后有初步

的患者在卧床状态下评估)、检查没有自主运动功能

的患者是否有浅层痛觉、检查没有完整浅层痛觉的患

者是否有深 层 痛觉、脊柱 反 射、皮 肤 躯干肌 反 射

(penniculus-reflex)、肛门张力、和会阴反射。如果

患者可以走动。且医生不怀疑患有椎体骨折或脱位

“VFL”,也可以对步态和感知能力进行评估,对所有怀

疑出现急性SCI的病畜一律都应进行脊柱的轻柔触

诊,来确定出现错位的位置(例如,“阶段性”的骨

折)、不稳定,不适,或有异响的区域。在进行神经系

统评估时,重要的是确认病人已被充分苏醒,因为休

克可以影响神经系统的状态。此外,进行彻底的卧位

骨科检查也是很重要的,这是用来排除骨科损伤作

为明显神经系统症状的一个潜在原因13,15。

每当怀疑非躺卧患畜有继发于椎体骨折或脱位

的急性脊髓损伤时,应尽量减少患畜的活动,患畜应

被固定在背板上,直到对骨折和脱位完成了最终明确

的评估13,15。

对病畜进行神经定位,并根据体征症状的严重程

度进行 分级 是必要的,修正的格 拉斯哥昏迷量表

【modified Glasgow Coma Scale - MGCS】的实用

性已经在狗身上得到了验证,被证实对评估创伤性脑

损伤的病畜十分有用,它提供了一种更为客观地去评

定临床症状改善或进展的方法,甚至还能提供预后信

息(表2)24,25。

一项回顾性研究显示,MGCS与狗在创伤后48小

时内的生存概率有着很强的相关性。

反复地神经系统评估 - 建议在初次发病后每

30-60 分钟进行一次评估,来评估治疗的临床反应

和临床症状的进展情况。目前有 3 个有效的评分系

统可用于评估与 SCI 相关的缺陷的严重程度:第一:

改良的弗兰克尔评分(Modified Frankel Score) ;第

二:14 点运动评分 (14-point Motor score) 和第三:

德 克 萨 斯 脊 髓 损伤评分 (Taxes Spinal cord injury

score )26,27 。

如果病畜只有一侧前肢反射减弱,患侧出现霍纳

综合征、泛神经反射减弱,则应怀疑臂丛神经损伤 13。

脊髓休克(spinal shock)的存在可能影响对急性 SCI

患畜的神经定位,脊髓休克导致病变尾部的节段性脊

柱反射缺失,即使反射弧保持物理的完整,但也会造

成弛缓性瘫痪(flaccid paralysis),这是由于急性 SCI

发生时,下降的脊髓上输入突然中断,人类脊柱休克

的恢复是漫长的,但在和狗和猫上的恢复要快得多,

通常在 12 至 24 小时内 28。

反应后恶化的患者。第三:和/或有局灶性或不对称的

神经体征的患者。CT(Computed-tomography)是用

于急性TBI特征描述的首选方式,因为它快速、相对不

昂贵,并且有很好识别轴外出血(如硬膜外、硬膜下

和蛛网膜下/脑室内出血)、轴内出血(如皮质挫伤、

脑膜内血肿和创伤性轴索损伤)、大脑肿胀和脑疝的

能力 9–11。

在急性期之外,当患者对药物治疗仍无反应或在

CT扫描结果正常的情况、接受积极的治疗但情况仍在

恶化的时候,建议进行磁共振成像(MRI)10,11。尽管单

单使用影像就可以得到有关小动物患者SCI的重要信

息,但它已被证明对检测狗的椎体骨折(72%)和半脱

位(77.5%)的敏感性相对较低31。如果不能使用更先

进的成像技术,应拍摄正交放射线照片(即使用水平

射线技术在侧卧位获得的两个视图)。对整个脊柱进

行成像扫描检查是必要的,因为大约20%的脊柱外伤

患者有多个VFL32。不应该单靠放射线照片上没有VFL

来明确排除其存在。与椎间盘突出症有关的放射学征

象包括:椎间盘空间变窄、椎间盘结构矿化、关节面变

窄以及椎间孔变窄或不透明33,34,这些征象在诊断椎

间盘 突出症 方面的准确性(51%- 61%)、敏 感性

(64%-69%)和阳性预测值(63%-71%)都比较低 33。

此外,其他SCI可能会与外伤同时发生,而单靠影

像检查可能不明显。

CT是骨科的首选成像方式,因此,对于临床症状

提示为不稳定的VFL的病人,建议使用CT。在一些人

体研究中,CT对诊断VFL的敏感度高达100%。

尽管单独使用CT仍然可以有相对较好的敏感度,

但脊髓造影和CT结合使用,可以提高诊断椎间盘突出

部位的敏感度。尽管CT需要镇静或全身麻醉,但现代

CT扫描的速度非常迅速,使之成为可以在有多发性创

伤的患者身上可行的成像方法。全身CT扫描通常可以

短于一分钟内获得,并可以评估颅骨、大脑、脊柱、胸

腔和腹部结构。

脊髓造影(myelography)包括向蛛网膜下腔注

射造影剂,并确定硬膜外被压迫部位的腹侧、背侧或

侧方造影柱的衰减,脊髓造影比普通放射性检查提

供更多关于椎间盘突出部位的信息。研究表明,脊髓

造影和手术结果的一致性约为81%-98%,病变侧向

的准确性约为53%-100%34–37。然而,脊髓造影术几乎

不能提供有关VFL的存在或实质内损伤的额外信息。

另外,脊髓造影是需要全身麻醉,也有与造影剂使用

相关的风险,包括术后癫痫发作38,39。

MRI 被认为对包括:脊髓实质、椎间盘和神经根

(nerve root) 在内的软组织的最佳成像方式。然而,它

提供的骨性结构的细节相对较少,因此,在对 VFLs

进行进一步成像时,它不是首选方式 40。这种方式比

其他技术更昂贵,而且需要更长的麻醉时间。在作者

所在的机构 / 医院,当其他技术(如 CT)不能揭示创

伤性 SCI 病人的神经功能障碍的原因时,通常会使用

这种方式。

第103页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 101 -

用药方案/药理策略

对神经系统以外的评估

与任何外伤病人一样,影像学检查应包括胸片以

排除肺挫伤、气胸和其他胸部或肺部创伤,以及腹部

影像学检查。理想情况下,还可以进行额外的诊断

(比如说重点对创伤部位进行超声检查)以排除器官

骨折和腹腔积液(如血性腹膜、尿性腹膜、化脓性腹

膜炎)29,30。

对颅内以及脊柱的评估

TBI小动物患者的颅内成像适用于,第一:对进取

的医疗管理没有反应的患者、第二:对治疗后有初步

反应后恶化的患者。第三:和/或有局灶性或不对称的

神经体征的患者。CT(Computed-tomography)是用

于急性TBI特征描述的首选方式,因为它快速、相对不

昂贵,并且有很好识别轴外出血(如硬膜外、硬膜下

和蛛网膜下/脑室内出血)、轴内出血(如皮质挫伤、

脑膜内血肿和创伤性轴索损伤)、大脑肿胀和脑疝的

能力 9–11。

在急性期之外,当患者对药物治疗仍无反应或在

CT扫描结果正常的情况、接受积极的治疗但情况仍在

恶化的时候,建议进行磁共振成像(MRI)10,11。尽管单

单使用影像就可以得到有关小动物患者SCI的重要信

息,但它已被证明对检测狗的椎体骨折(72%)和半脱

位(77.5%)的敏感性相对较低31。如果不能使用更先

进的成像技术,应拍摄正交放射线照片(即使用水平

射线技术在侧卧位获得的两个视图)。对整个脊柱进

行成像扫描检查是必要的,因为大约20%的脊柱外伤

患者有多个VFL32。不应该单靠放射线照片上没有VFL

来明确排除其存在。与椎间盘突出症有关的放射学征

象包括:椎间盘空间变窄、椎间盘结构矿化、关节面变

窄以及椎间孔变窄或不透明33,34,这些征象在诊断椎

间盘 突出症 方面的准确性(51%- 61%)、敏 感性

(64%-69%)和阳性预测值(63%-71%)都比较低 33。

此外,其他SCI可能会与外伤同时发生,而单靠影

像检查可能不明显。

CT是骨科的首选成像方式,因此,对于临床症状

提示为不稳定的VFL的病人,建议使用CT。在一些人

体研究中,CT对诊断VFL的敏感度高达100%。

尽管单独使用CT仍然可以有相对较好的敏感度,

但脊髓造影和CT结合使用,可以提高诊断椎间盘突出

部位的敏感度。尽管CT需要镇静或全身麻醉,但现代

CT扫描的速度非常迅速,使之成为可以在有多发性创

伤的患者身上可行的成像方法。全身CT扫描通常可以

短于一分钟内获得,并可以评估颅骨、大脑、脊柱、胸

腔和腹部结构。

脊髓造影(myelography)包括向蛛网膜下腔注

射造影剂,并确定硬膜外被压迫部位的腹侧、背侧或

侧方造影柱的衰减,脊髓造影比普通放射性检查提

供更多关于椎间盘突出部位的信息。研究表明,脊髓

造影和手术结果的一致性约为81%-98%,病变侧向

的准确性约为53%-100%34–37。然而,脊髓造影术几乎

不能提供有关VFL的存在或实质内损伤的额外信息。

另外,脊髓造影是需要全身麻醉,也有与造影剂使用

相关的风险,包括术后癫痫发作38,39。

MRI 被认为对包括:脊髓实质、椎间盘和神经根

(nerve root) 在内的软组织的最佳成像方式。然而,它

提供的骨性结构的细节相对较少,因此,在对 VFLs

进行进一步成像时,它不是首选方式 40。这种方式比

其他技术更昂贵,而且需要更长的麻醉时间。在作者

所在的机构 / 医院,当其他技术(如 CT)不能揭示创

伤性 SCI 病人的神经功能障碍的原因时,通常会使用

这种方式。

给氧治疗 / 氧气治疗

在需要的情况下,应补充氧气以维持常氧血症

(氧分压 [ PaO2 ]= 80-100 mmHg 和脉搏氧饱和度 [

SpO2 ]=94%-98%),但应调整剂量以避免高氧血症,

因为这可能会加剧再灌注损伤 7

供氧方式包括面罩、鼻腔或鼻咽插管、氧气笼或

帐篷,以及气管内给氧 41。 在初步评估状态和抢救过

程中,通常建议使用面罩给氧,直到可以开始进行氧

合监测。鼻腔或鼻咽插管的好处是确保高浓度的吸入

氧,但鼻腔刺激可诱发打喷嚏,这可能导致 ICP 增加,

但由于意识水平的降低,大多数创伤性脑损伤患者对

鼻腔氧气的耐受性很好。氧气笼也可以提供相对较高

的吸氧量,但不幸的是,对危重病人来说,氧气笼的使

用范围很小 42。 应该对每只患者进行评估,才能确定

适合不同患者的最佳给氧方式。如果使用超过 60%

的高氧浓度( FiO2 )都不能维持足够的氧气供应,则

需要机械通气 43。

静脉输液治疗

兽医界对神经创伤患者的输液复苏最佳选择存

在争议,液体复苏对选择包括等渗冷冻液、高渗溶液、

人工胶体溶液和血制品。对创伤性脑损伤的管理中,

人们特别担心大脑对水肿加重(由于细胞之间的紧密

连接遭到破坏后,随后的离子和较大的胶体大小的分

子涌入产生的二次渗透力导致的大脑水肿)的保护能

力 4

,因此,建议使用含有最少游离水的等渗液体(例

如,0.9%NaCl 除非在发病时已经出现明显的钠盐失

调,否则应给予 NaCl)由于大脑间质和细胞内质之间

的液体转移主要由渗透压决定,而不是由血浆渗透压

决定,因此胶体溶液并没有显示出比晶体液治疗有更

明显的优势 44。然而,由于晶体液在给药后在身体的

快速分布,可以考虑将胶体疗法与晶体液疗法(等渗

或高渗)相结合,以提供更持久的容量复苏 7

高渗盐水(Hypertonic Saline - HTS)对有神经

创伤患者(尤其是创伤性休克患者)有几个潜在的好

处,包括迅速增加血管内容量,增加心输出量,通过使

脑血管内皮细胞脱水来改善区域脑和脊髓血流,增加

血管直径,降低 ICP,并加强脑氧输送 45–50。重要的是

要注意所使用的 HTS 的浓度,因为这将影响溶液的

剂量 4

,HTS 应仅用于无明显钠失调的脱水病人。

此外,当务之急是在 HTS 之后要进行晶体液输

液治疗以维持足够的组织含水量。 

贫血病人应使用填充红细胞或全血治疗,以保持

足够的动脉含氧量和对受损神经组织的氧气输送。输

血目标包括灌注参数的正常化(包括中心静脉血氧饱

和度 >70%)。凝血功能障碍的病人应使用新鲜冷冻血

浆 7

。那些对液体复苏没有反应的病人需要血管收缩

剂支持 7

。在最初的液体复苏后,应继续进行输液治

疗,以满足维持需求、不足和任何持续损失。表 3 中列

出了建议的静脉输液的初始剂量。

表3:静脉输液的治疗以及其建议剂量

输液类型 建议剂量

等渗性晶体液(首选 0.9%NaCl)

Isotonic crystalloid

狗 20-30mL/kg、猫 10-20 mL/kg

在15-20分钟内输完,之后进行评估

合成胶体(例如,6%羟乙基淀粉)

Synthetic colloid (e.g.6% hydroxyethylstarch)

5-10mL/kg、在15-20分钟内输完,之后进行评估,在这之

后始终要使用晶体液注射

7.5% 氯化钠 NaCl 4mL/kg 在15-20分钟内输完,之后进行评估,在这之后始

终要使用晶体液注射

3% 氯化钠 NaCl 5.4mL/kg 在15-20分钟内输完,之后进行评估,在这之后始

终要使用晶体液注射

1:2的23.4%NaCl和6%羟乙基淀粉

或其他合成胶体

1:2 ratio of 23.4% NaCl and 6% hydroxyethylstarch or other

synthetic colloid

4mL/kg,在15-20分钟内输完,之后进行评估,在这之后始

终要使用晶体液注射

红细胞/全血治疗

Packed red blood cells

~ 10 - 15mL/kg,少于 每四个小时一个单位 4g/unint以达到

灌注为正常作为治疗目标 (normalization of perfusion)

参数和PCV= 25% - 30%

新鲜冷冻血浆

Fresh frozen plasma

5-10mL/kg 少于 每四个小时一个单位 4g/unint在这以达到

凝血时间正常作为治疗目标

第104页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 102 -

疼痛管理

给氧治疗 / 氧气治疗

在需要的情况下,应补充氧气以维持常氧血症

(氧分压 [ PaO2 ]= 80-100 mmHg 和脉搏氧饱和度 [

SpO2 ]=94%-98%),但应调整剂量以避免高氧血症,

因为这可能会加剧再灌注损伤 7

供氧方式包括面罩、鼻腔或鼻咽插管、氧气笼或

帐篷,以及气管内给氧 41。 在初步评估状态和抢救过

程中,通常建议使用面罩给氧,直到可以开始进行氧

合监测。鼻腔或鼻咽插管的好处是确保高浓度的吸入

氧,但鼻腔刺激可诱发打喷嚏,这可能导致 ICP 增加,

但由于意识水平的降低,大多数创伤性脑损伤患者对

鼻腔氧气的耐受性很好。氧气笼也可以提供相对较高

的吸氧量,但不幸的是,对危重病人来说,氧气笼的使

用范围很小 42。 应该对每只患者进行评估,才能确定

适合不同患者的最佳给氧方式。如果使用超过 60%

的高氧浓度( FiO2 )都不能维持足够的氧气供应,则

需要机械通气 43。

静脉输液治疗

兽医界对神经创伤患者的输液复苏最佳选择存

在争议,液体复苏对选择包括等渗冷冻液、高渗溶液、

人工胶体溶液和血制品。对创伤性脑损伤的管理中,

人们特别担心大脑对水肿加重(由于细胞之间的紧密

连接遭到破坏后,随后的离子和较大的胶体大小的分

子涌入产生的二次渗透力导致的大脑水肿)的保护能

力 4

,因此,建议使用含有最少游离水的等渗液体(例

如,0.9%NaCl 除非在发病时已经出现明显的钠盐失

调,否则应给予 NaCl)由于大脑间质和细胞内质之间

的液体转移主要由渗透压决定,而不是由血浆渗透压

决定,因此胶体溶液并没有显示出比晶体液治疗有更

明显的优势 44。然而,由于晶体液在给药后在身体的

快速分布,可以考虑将胶体疗法与晶体液疗法(等渗

或高渗)相结合,以提供更持久的容量复苏 7

高渗盐水(Hypertonic Saline - HTS)对有神经

创伤患者(尤其是创伤性休克患者)有几个潜在的好

处,包括迅速增加血管内容量,增加心输出量,通过使

脑血管内皮细胞脱水来改善区域脑和脊髓血流,增加

血管直径,降低 ICP,并加强脑氧输送 45–50。重要的是

要注意所使用的 HTS 的浓度,因为这将影响溶液的

剂量 4

,HTS 应仅用于无明显钠失调的脱水病人。

此外,当务之急是在 HTS 之后要进行晶体液输

液治疗以维持足够的组织含水量。 

贫血病人应使用填充红细胞或全血治疗,以保持

足够的动脉含氧量和对受损神经组织的氧气输送。输

血目标包括灌注参数的正常化(包括中心静脉血氧饱

和度 >70%)。凝血功能障碍的病人应使用新鲜冷冻血

浆 7

。那些对液体复苏没有反应的病人需要血管收缩

剂支持 7

。在最初的液体复苏后,应继续进行输液治

疗,以满足维持需求、不足和任何持续损失。表 3 中列

出了建议的静脉输液的初始剂量。

镇痛治疗在神经创伤患者中的管理是至关重要

的。 镇痛和镇静必须与保持血压和通气状态相平衡,

因为这些参数的抑制会导致二次伤害,要尽可能不妨

碍对神经系统状态的重新评估。TBI 患者充分的镇痛

可以避免因疼痛和躁动引起的 ICP 的短暂增加,这可

能导致脑代谢率的增加,从而导致脑血流和脑容量的

增加 51 。

阿片类药物 (Opioids) 是重症中的首选镇痛药

物,因为它们易于逆转,而且在滴定至生效时相对安

全。一些研究表明,应避免阿片类药物的快速大剂量

注射 (bolus infusinon),而首选恒速注射(Constant

rate infusion - CRI)51–55。由于容易逆转,建议使用完

全激动性阿片类药物 56,57 。

氯胺酮 (Ketamine) 对 N- 甲基 -D- 天门冬氨酸

(N-methyl-D-aspartate NMDA)接收器体有非竞争

性抑制作用 , 因此,这种药剂除了对心血管和呼吸道

具有保护的特性外,还可能具有针对缺血和谷氨酸引

起的神经损伤有保护作用。最近的研究未能证明氯胺

酮(ketamine)会导致如以往文献中常报道的 ICP 增

加 51,然而,它已被证明可能是通过抑制 G- 氨基丁酸

(GABA)受体从而增加脑耗氧量,因此,使用 GABA 激

动剂(如丙泊酚 propofol)可能会减少这些负面效应。 

美托咪定(medetomidine),一种α2- 激动剂,根

据记录表明对麻醉中的狗 ICP 没有影响。58 因为这类

药物的镇痛或镇静特性,使用时必须谨慎,因为它们

可以引起临床上显著的心率和心输出量 (cardiac

output) 的降低,从而影响中枢神经系统的灌注 23。表

4 列出了推荐的镇痛剂和它们各自相对的剂量。

表4:镇痛和建议使用剂量

镇痛剂

analgesic

推荐使用剂量

recommended dose

芬太尼

(fentanyl)

狗 ,以 的速度

匀速持续输液(

猫 ,以 的速度

匀速持续输液(

吗啡

(morphine)

狗 ,先缓慢地输 然后以 的速度匀速

持续输液(

氯胺酮 (ketamine) ,然后以 的速度匀速持续输液(

利多卡因(lidocaine) 狗: , 以 的速度匀速持续输液(

右美托咪啶 (dexmedetomidine)

2μg/kg 2-5μg/kg/h

CRI)

1μg/kg 1-2μg/kg/h

CRI)

0.15-0.5 μg/kg 0.1-1μg/kg/h

CRI)

0.1-1 mg/kg 2-10μg/kg/h CRI)

1-2mg/kg 25-80μg/kg/h CRI)

0.5-1 μg/kg/h

第105页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 103 -

针对创伤性脑损伤的药理策略

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

高渗疗法 (hyperosmolar therapy)

颅内高血压一直与创伤性休克患者的不良后果

有关 59。自 20 世纪初,高渗盐溶液(HTS) 和葡萄糖溶

液被证明可以降低猫的 CSF 压力以来,高渗治疗一直

是管理颅内高血压的基本操作 60。大脑是由 80% 的水

组成,使其体积对水含量的变化反应很大。渗透剂只

有在 BBB 对其不可渗透的情况下才有效,钠和甘露醇

(mannitol) 对 BBB 有近乎完美的排斥作用,使 HTS

和甘露醇对解决颅内高血压极为有效。TBI 高渗治疗

主要影响正常的脑组织,而不是受伤的脑组织 61。 甘

露醇是一种糖醇,不会有明显的代谢,静脉输液后在

尿液中以同等的量排泄掉。它被推荐作为颅内高压的

一线治疗药物,表 5 总结了甘露醇的作用机制、推荐

剂量及它的副作用 4,63-81。 除非担心 ICP 升高,否则不

推荐将甘露醇用于创伤性休克患者的预防性治疗,因

为其有效性与颅内高压的程度有关,而且随着累积剂

量的增加,其相关反应也会减少(即在真正需要时,其

有效性可能会降低)64,65。甘露醇给药后应始终进行等

渗性冰片和 / 或胶体治疗,以避免其利尿作用引起低

血容量,如果可能的话,在重复给药的时候最好能测

量血清渗透压 7

。 

高渗盐水治疗提供了与甘露醇治疗类似的渗透

性益处,但它是一种不太有效的利尿剂,表 5 总结了

表5:甘露醇 (mannitol)与高渗盐溶液(HTS) 作对比

缩写:BBB,血脑屏障;CRI,恒速输注;ICP,颅内压

高渗盐水的作用机制、建议剂量、不良反应和相对禁

忌症 63,66。一般建议钠浓度保持在 160mEq/L 以下,但

也有报道在人身上使用高渗盐水治疗,钠浓度高达

180mEq/L 也没有发生并发症 67。

没有证据表明甘露醇在治疗颅内高血压方面优

于HTS,反之亦然。现有的少量研究显示了相互矛盾

的结果68–71。对于等容量的病人来说,HTS可能更可

取,但对于等容积性的病人来说,两者都是合理

的。当病人对一种药物的治疗没有反应时,应考虑

另一种药物。 

单独使用呋塞米(fursemide)或与甘露醇同时

使用来治疗颅内高血压并没有显示出任何额外的好

处,而且会增加容量耗竭的风险72。因此,不推荐使

用该药。 

皮质类固醇 (corticosteroids)

皮质类固醇以前被主张用于治疗创伤性脑损伤

患者,原因是皮质类固醇可以减少脑水肿。来自

CRASH 试验的突破性证据表明,使用大剂量的甲基

强的松龙(methylprednisolone) 与伤后 2 周和 6 个

月的死亡率增加有关 73,74。因此,皮质类固醇不再被推

荐用于治疗创伤性脑损伤患者。 

抗惊厥剂治疗 (anti-convulsant)

创伤后的癫痫发作分为立即发作(发生在受伤后

24 小时内)、早期(发生在受伤后 24 小时至 7 天内)

或晚期(发生在受伤后 7 天以上)62。癫痫发作通过增

加脑代谢需求、增加 ICP 和导致释放过多的神经递质

而 增 加 继 发 性 脑 损 伤。最 近 的 一 项 Cochrane

meta-analysis 认为,预防性抗癫痫药物在减少早期

癫痫发作方面是有效的,但没有证据表明它们在预防

晚期癫痫发作是有效的 , 因此,建议在人类创伤后 7

天内使用预防性抗癫痫药物 75, 但兽医界关于这个的

数据很少,但如果出现癫痫发作,应积极进行抗癫痫

药物(AED)治疗,以减少继发性脑损伤。小动物创伤

后癫痫发作的发生率没有被很好的记录,但已知小动

物身上也会有癫痫发作。 目前,在兽医领域还没有关

于预防性 AED 治疗的明确建议。如果存在癫痫发作

的潜在因素(例如,头部穿透性损伤、颅骨凹陷性骨折

等等),根据来源于人类身上的建议,在受伤后的头 7

天考虑预防性 AED 治疗是合理的。AED 治疗的持续

时间是有争议的,如果癫痫发作,应将苯二氮卓类药

物(bezodiazapines) 作为第一选择治疗,以阻止癫痫

发作 76。有多种用于持续控制癫痫发作的 AED 可供狗

和猫使用,这些药物列于表 6。在作者所在的机构,左

乙拉西坦因(levetiracetam) 其起效快、副作用小、毒

性低而被经常使用。 

巴比妥类药物治疗

巴比妥类药物被认为是治疗难治性(refractory)

的颅内高压的次要疗法,因为当其他药物和手术治疗

失败时,大剂量的巴比妥药物可以控制 ICP。然而,目

前还没有证据表明有任何疗效 62。巴比妥类药物的神

经保护作用与它们能够引起脑血管收缩、降低脑代

谢、减少 ICP、减少兴奋性毒性和减少自由基介导的

损伤有关 77,巴比妥类药物还具有抗惊厥的特性,与

使用巴比妥类药物有关的并发症有心血管和呼吸抑

制,且具有潜在临床意义的低血压(和相关的 CPP 的

下降)和换气不足(hypoventilation)。最广泛用于治

疗创伤性休克的巴比妥类药物是戊巴比妥 4

。最近有

一份研究记录了一只有创伤性骨折和难治性癫痫活

动的狗身上表明 - 巴比妥类昏迷(用苯巴比妥或其他

镇静剂等药物诱导)与治疗性低温(therapeutic

hypothermia - TH)有关。对接受巴比妥酸盐治疗的

病人必须密切监 测是否有换气不足的情况,并可能

需要机械通气(mechanical ventilation)。

新的治疗方法

目前人类医学界正在研究针对兴奋性毒性和活

性氧产生的新疗法,但迄今为止还没有任何一种疗法

被 用 于 兽 医 实 践。最 近 的 一 项 关 于 金 刚 烷 胺

(amantadine)的随机对照试验表明,在 4 周的时间

里,接受治疗的病人的功能恢复明显加快 79。在不久

的将来,会有更多专门针对继发性伤害的疗法将会提

供给兽医来选择。 

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

甘露醇 (mannitol) 高渗盐溶液(HTS)

作用机制

1.增加渗透BBB的渗透压梯度(osmotic

gradient)

2. 血浆增多和血液粘稠度降低

3.改善脑部氧气输送和自我调节

4. 导致脑部血管收缩,减少脑血容量和ICP降低

和减少自由基清除

1.增加渗透BBB的渗透压梯度(osmotic

gradient)

2.容积增加

3.增加心输出量和血压上升

建议剂量

1.0.5 - 1.0 g/kg

在15-20分钟内缓慢地注射

2.在几分钟内生效

3.在15-120分钟内达到峰值

①7.5% NaCl: 4mL/kg

②3% NaCl: 5.4mL/kg

③1:2 的比例 23.4%NaCl 兑6%的氢化淀粉

(hetastarch)4mL/kg

在15-20分钟内完成注射,完成后进行评估,之

后始终要使用晶体液注射

副作用 低血容量 明显的钠紊乱、脱水

第106页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 104 -

表6:抗癫痫药物和推荐剂量

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

高渗疗法 (hyperosmolar therapy)

颅内高血压一直与创伤性休克患者的不良后果

有关 59。自 20 世纪初,高渗盐溶液(HTS) 和葡萄糖溶

液被证明可以降低猫的 CSF 压力以来,高渗治疗一直

是管理颅内高血压的基本操作 60。大脑是由 80% 的水

组成,使其体积对水含量的变化反应很大。渗透剂只

有在 BBB 对其不可渗透的情况下才有效,钠和甘露醇

(mannitol) 对 BBB 有近乎完美的排斥作用,使 HTS

和甘露醇对解决颅内高血压极为有效。TBI 高渗治疗

主要影响正常的脑组织,而不是受伤的脑组织 61。 甘

露醇是一种糖醇,不会有明显的代谢,静脉输液后在

尿液中以同等的量排泄掉。它被推荐作为颅内高压的

一线治疗药物,表 5 总结了甘露醇的作用机制、推荐

剂量及它的副作用 4,63-81。 除非担心 ICP 升高,否则不

推荐将甘露醇用于创伤性休克患者的预防性治疗,因

为其有效性与颅内高压的程度有关,而且随着累积剂

量的增加,其相关反应也会减少(即在真正需要时,其

有效性可能会降低)64,65。甘露醇给药后应始终进行等

渗性冰片和 / 或胶体治疗,以避免其利尿作用引起低

血容量,如果可能的话,在重复给药的时候最好能测

量血清渗透压 7

。 

高渗盐水治疗提供了与甘露醇治疗类似的渗透

性益处,但它是一种不太有效的利尿剂,表 5 总结了

高渗盐水的作用机制、建议剂量、不良反应和相对禁

忌症 63,66。一般建议钠浓度保持在 160mEq/L 以下,但

也有报道在人身上使用高渗盐水治疗,钠浓度高达

180mEq/L 也没有发生并发症 67。

没有证据表明甘露醇在治疗颅内高血压方面优

于HTS,反之亦然。现有的少量研究显示了相互矛盾

的结果68–71。对于等容量的病人来说,HTS可能更可

取,但对于等容积性的病人来说,两者都是合理

的。当病人对一种药物的治疗没有反应时,应考虑

另一种药物。 

单独使用呋塞米(fursemide)或与甘露醇同时

使用来治疗颅内高血压并没有显示出任何额外的好

处,而且会增加容量耗竭的风险72。因此,不推荐使

用该药。 

皮质类固醇 (corticosteroids)

皮质类固醇以前被主张用于治疗创伤性脑损伤

患者,原因是皮质类固醇可以减少脑水肿。来自

CRASH 试验的突破性证据表明,使用大剂量的甲基

强的松龙(methylprednisolone) 与伤后 2 周和 6 个

月的死亡率增加有关 73,74。因此,皮质类固醇不再被推

荐用于治疗创伤性脑损伤患者。 

抗惊厥剂治疗 (anti-convulsant)

创伤后的癫痫发作分为立即发作(发生在受伤后

24 小时内)、早期(发生在受伤后 24 小时至 7 天内)

或晚期(发生在受伤后 7 天以上)62。癫痫发作通过增

加脑代谢需求、增加 ICP 和导致释放过多的神经递质

而 增 加 继 发 性 脑 损 伤。最 近 的 一 项 Cochrane

meta-analysis 认为,预防性抗癫痫药物在减少早期

癫痫发作方面是有效的,但没有证据表明它们在预防

晚期癫痫发作是有效的 , 因此,建议在人类创伤后 7

天内使用预防性抗癫痫药物 75, 但兽医界关于这个的

数据很少,但如果出现癫痫发作,应积极进行抗癫痫

药物(AED)治疗,以减少继发性脑损伤。小动物创伤

后癫痫发作的发生率没有被很好的记录,但已知小动

物身上也会有癫痫发作。 目前,在兽医领域还没有关

于预防性 AED 治疗的明确建议。如果存在癫痫发作

的潜在因素(例如,头部穿透性损伤、颅骨凹陷性骨折

等等),根据来源于人类身上的建议,在受伤后的头 7

天考虑预防性 AED 治疗是合理的。AED 治疗的持续

时间是有争议的,如果癫痫发作,应将苯二氮卓类药

物(bezodiazapines) 作为第一选择治疗,以阻止癫痫

发作 76。有多种用于持续控制癫痫发作的 AED 可供狗

和猫使用,这些药物列于表 6。在作者所在的机构,左

乙拉西坦因(levetiracetam) 其起效快、副作用小、毒

性低而被经常使用。 

巴比妥类药物治疗

巴比妥类药物被认为是治疗难治性(refractory)

的颅内高压的次要疗法,因为当其他药物和手术治疗

失败时,大剂量的巴比妥药物可以控制 ICP。然而,目

前还没有证据表明有任何疗效 62。巴比妥类药物的神

经保护作用与它们能够引起脑血管收缩、降低脑代

谢、减少 ICP、减少兴奋性毒性和减少自由基介导的

损伤有关 77,巴比妥类药物还具有抗惊厥的特性,与

使用巴比妥类药物有关的并发症有心血管和呼吸抑

制,且具有潜在临床意义的低血压(和相关的 CPP 的

下降)和换气不足(hypoventilation)。最广泛用于治

疗创伤性休克的巴比妥类药物是戊巴比妥 4

。最近有

一份研究记录了一只有创伤性骨折和难治性癫痫活

动的狗身上表明 - 巴比妥类昏迷(用苯巴比妥或其他

镇静剂等药物诱导)与治疗性低温(therapeutic

hypothermia - TH)有关。对接受巴比妥酸盐治疗的

病人必须密切监 测是否有换气不足的情况,并可能

需要机械通气(mechanical ventilation)。

新的治疗方法

目前人类医学界正在研究针对兴奋性毒性和活

性氧产生的新疗法,但迄今为止还没有任何一种疗法

被 用 于 兽 医 实 践。最 近 的 一 项 关 于 金 刚 烷 胺

(amantadine)的随机对照试验表明,在 4 周的时间

里,接受治疗的病人的功能恢复明显加快 79。在不久

的将来,会有更多专门针对继发性伤害的疗法将会提

供给兽医来选择。 

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

抗癫痫药物 推荐剂量

地西泮

(diazepam)

0.5mg/kg IV ,直肠,鼻腔注射

CRI 0.2-1mg/kg/h

苯巴比妥

(phenobarbital)

12-20 mg/kg IV,PO 分次注射,q 4-6 h,持续24 h

狗:2.5mg/kgIV,PO,最开始 q12h,

直到 谷值为20-30毫克/毫升

猫:2.5mg/kgIV,PO,最开始 q24h

直到 谷值为10-20毫克/毫升

溴化钾 (potassium bromide) 400-600mg/kg KBr PO/直肠 24-28h 内 q6-12

CRI:8-24小时内 600-1200 mg/kg NaBr IV

左乙拉西坦

Levetiracetam (keppra) 20-30 mg/kg IV,PO q8h

唑尼沙胺

(Zonisamide)

10 mg/kg PO q 12 h x 3 d 之后

5-10 mg/kg q 12 h

以10-40 g/mL 为治疗范围 (以在人身上的做为标准)

异丙酚

(propofol)

12-20 mg/kg IV bolus

CRI 0.05-0.4 mg/kg/min

戊巴比妥 (Pentobarbital)

*最常用于诱导巴比妥类昏迷的抗癫痫药物

2-15 mg/kg IV bolus over 20min

CRI 0.1 -1 mg/kg/h

μ

第107页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 105 -

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

高渗疗法 (hyperosmolar therapy)

颅内高血压一直与创伤性休克患者的不良后果

有关 59。自 20 世纪初,高渗盐溶液(HTS) 和葡萄糖溶

液被证明可以降低猫的 CSF 压力以来,高渗治疗一直

是管理颅内高血压的基本操作 60。大脑是由 80% 的水

组成,使其体积对水含量的变化反应很大。渗透剂只

有在 BBB 对其不可渗透的情况下才有效,钠和甘露醇

(mannitol) 对 BBB 有近乎完美的排斥作用,使 HTS

和甘露醇对解决颅内高血压极为有效。TBI 高渗治疗

主要影响正常的脑组织,而不是受伤的脑组织 61。 甘

露醇是一种糖醇,不会有明显的代谢,静脉输液后在

尿液中以同等的量排泄掉。它被推荐作为颅内高压的

一线治疗药物,表 5 总结了甘露醇的作用机制、推荐

剂量及它的副作用 4,63-81。 除非担心 ICP 升高,否则不

推荐将甘露醇用于创伤性休克患者的预防性治疗,因

为其有效性与颅内高压的程度有关,而且随着累积剂

量的增加,其相关反应也会减少(即在真正需要时,其

有效性可能会降低)64,65。甘露醇给药后应始终进行等

渗性冰片和 / 或胶体治疗,以避免其利尿作用引起低

血容量,如果可能的话,在重复给药的时候最好能测

量血清渗透压 7

。 

高渗盐水治疗提供了与甘露醇治疗类似的渗透

性益处,但它是一种不太有效的利尿剂,表 5 总结了

高渗盐水的作用机制、建议剂量、不良反应和相对禁

忌症 63,66。一般建议钠浓度保持在 160mEq/L 以下,但

也有报道在人身上使用高渗盐水治疗,钠浓度高达

180mEq/L 也没有发生并发症 67。

没有证据表明甘露醇在治疗颅内高血压方面优

于HTS,反之亦然。现有的少量研究显示了相互矛盾

的结果68–71。对于等容量的病人来说,HTS可能更可

取,但对于等容积性的病人来说,两者都是合理

的。当病人对一种药物的治疗没有反应时,应考虑

另一种药物。 

单独使用呋塞米(fursemide)或与甘露醇同时

使用来治疗颅内高血压并没有显示出任何额外的好

处,而且会增加容量耗竭的风险72。因此,不推荐使

用该药。 

皮质类固醇 (corticosteroids)

皮质类固醇以前被主张用于治疗创伤性脑损伤

患者,原因是皮质类固醇可以减少脑水肿。来自

CRASH 试验的突破性证据表明,使用大剂量的甲基

强的松龙(methylprednisolone) 与伤后 2 周和 6 个

月的死亡率增加有关 73,74。因此,皮质类固醇不再被推

荐用于治疗创伤性脑损伤患者。 

抗惊厥剂治疗 (anti-convulsant)

创伤后的癫痫发作分为立即发作(发生在受伤后

24 小时内)、早期(发生在受伤后 24 小时至 7 天内)

或晚期(发生在受伤后 7 天以上)62。癫痫发作通过增

加脑代谢需求、增加 ICP 和导致释放过多的神经递质

而 增 加 继 发 性 脑 损 伤。最 近 的 一 项 Cochrane

meta-analysis 认为,预防性抗癫痫药物在减少早期

癫痫发作方面是有效的,但没有证据表明它们在预防

晚期癫痫发作是有效的 , 因此,建议在人类创伤后 7

天内使用预防性抗癫痫药物 75, 但兽医界关于这个的

数据很少,但如果出现癫痫发作,应积极进行抗癫痫

药物(AED)治疗,以减少继发性脑损伤。小动物创伤

后癫痫发作的发生率没有被很好的记录,但已知小动

物身上也会有癫痫发作。 目前,在兽医领域还没有关

于预防性 AED 治疗的明确建议。如果存在癫痫发作

的潜在因素(例如,头部穿透性损伤、颅骨凹陷性骨折

等等),根据来源于人类身上的建议,在受伤后的头 7

天考虑预防性 AED 治疗是合理的。AED 治疗的持续

时间是有争议的,如果癫痫发作,应将苯二氮卓类药

物(bezodiazapines) 作为第一选择治疗,以阻止癫痫

发作 76。有多种用于持续控制癫痫发作的 AED 可供狗

和猫使用,这些药物列于表 6。在作者所在的机构,左

乙拉西坦因(levetiracetam) 其起效快、副作用小、毒

性低而被经常使用。 

巴比妥类药物治疗

巴比妥类药物被认为是治疗难治性(refractory)

的颅内高压的次要疗法,因为当其他药物和手术治疗

失败时,大剂量的巴比妥药物可以控制 ICP。然而,目

前还没有证据表明有任何疗效 62。巴比妥类药物的神

经保护作用与它们能够引起脑血管收缩、降低脑代

谢、减少 ICP、减少兴奋性毒性和减少自由基介导的

损伤有关 77,巴比妥类药物还具有抗惊厥的特性,与

使用巴比妥类药物有关的并发症有心血管和呼吸抑

制,且具有潜在临床意义的低血压(和相关的 CPP 的

下降)和换气不足(hypoventilation)。最广泛用于治

疗创伤性休克的巴比妥类药物是戊巴比妥 4

。最近有

一份研究记录了一只有创伤性骨折和难治性癫痫活

动的狗身上表明 - 巴比妥类昏迷(用苯巴比妥或其他

镇静剂等药物诱导)与治疗性低温(therapeutic

hypothermia - TH)有关。对接受巴比妥酸盐治疗的

病人必须密切监 测是否有换气不足的情况,并可能

需要机械通气(mechanical ventilation)。

新的治疗方法

目前人类医学界正在研究针对兴奋性毒性和活

性氧产生的新疗法,但迄今为止还没有任何一种疗法

被 用 于 兽 医 实 践。最 近 的 一 项 关 于 金 刚 烷 胺

(amantadine)的随机对照试验表明,在 4 周的时间

里,接受治疗的病人的功能恢复明显加快 79。在不久

的将来,会有更多专门针对继发性伤害的疗法将会提

供给兽医来选择。 

皮质类固醇药物 

尽管有广泛的临床研究,使用皮质类固醇治疗人

类和动物的急性 SCI 仍然有争议。认可在 SCI 中使用

皮质类固醇的机制包括清除自由基、抗炎作用和改善

区域血流 13,15。大部分关于皮质类固醇治疗 SCI 的临

床和实验研究都集中在甲基泼尼松龙琥珀酸钠

(methylprednisolone sodium succinate - MPSS)上。

MPSS 的主要神经保护特性似乎是来源于其清除自由

基的能力 , 其他皮质类固醇(如泼尼松和地塞米松)就

缺乏这种特性,因此它们在治疗继发性 SCI 方面不可

能有任何效果。地塞米松对狗的治疗的具体评估,无

论是在实验上还是在临床上,都没有发现对 SCI 有任

何帮助 81,82。一系列的 3 项人类临床试验(国家急性脊

髓损伤研究 [NASCIS]I-III)提供了大部分有关使用

MPSS 治疗急性 SCI 的主要证据 83–85,因为大多数有

统计学意义的结果都是基于事后的亚组分析,所以这

些研究都没有令人信服地证明类固醇能够对改善运

动功能 86。一项在狗身上进行的实验性研究,把紧急减

压手术与 MPSS 治疗作对比来治疗实验引导的 SCI,

结果显示,在受伤 6 小时后进行手术减压(有或没有

MPSS),比单独使用 MPSS 治疗有更好的神经治疗效

果 87。另一项在狗身上作实验的研究显示,使用 MPSS

的病例没有改善 88。目前还没有公开出版的临床安慰

剂对照试验来评估 MPSS 治疗狗 SCI 的疗效,但目前

有一项试验正在进行 16。鉴于潜在的重大不良副作用,

如胃肠道溃疡、免疫抑制和低血容量患者的肾脏灌注

影响,不建议常规使用皮质类固醇(包括 MPSS)13。

表 7 总结了其他的药物疗法,旨在最大限度地减

少急性 SCI 的二次伤害,这些疗法已被研究 89–101。

针对急性SCI的药物策略

非药物治疗策略

系统性治疗

气 道 管 理 和 换 气 (airway management and

ventilation)

当神经创伤病人最初来的医生面前时,应直接检

查上呼吸道,若有必要时要进行抽吸。如果认为气道

不通畅或患者无法控制其气道,应立即进行气管内插

管或紧急气管切开术(如果无法插管)7

。二氧化碳对大

脑和脊髓的血流和血容量有很大的的影响 102。在神经

创伤患者中应都要去避免换气不足和过度换气,并应

使用潮气末二氧化碳(ETCO2)监测器或血气分析来密

切监测二氧化碳在体内的含量,在所有情况下都应以

正常的二氧化碳分压(PCO2)(静脉, 40-45mm Hg;

动脉, 35-40mmHg) 为目标标准 62。滴定镇痛药物、

采用胸骨朝下的卧位和确保气道畅通都可以帮助生

命体征问题的解决,但如果这些干预措施不成功,则

需要进行气管插管和机械通气。那些有脑疝风险的病

人或经历过明显的神经系统失调的病人可以进行短

时间的过度换气。然而,短期过度换气的限度应该是

保守的 / 不能过大(ETCO2 = 30-35 mmHg),以防止

过度的脑血管收缩和缺血性脑损伤,一些研究评估了

初始复苏期间预防性过度换气的结果,通常都是不佳

的 103-105 。

支持性护理 supportive care

对神经系统创伤猫 / 狗的支持性护理应包括提供

干燥、清洁的被褥、经常翻身、人为辅助的运动练习、

膀胱护理、眼部护理(例如,经常润滑和检查角膜溃

烂),以及良好的营养提供。

在神经创伤的患者中, 高代谢状态已被记录,建

议早些喂食 106。喂食的方法应基于对病人气道保护能

力的评估。 虽然高血糖与人类创伤性疾病的死亡率和

神经系统结果评分的恶化有关 107,并且高血糖的程度

与动物创伤性疾病的严重程度有关,但根据现有在人

类身上的文献 108, 不建议用高强度的胰岛素治疗来

控制高血糖 109–111。

膀胱功能障碍在 SCI 患者中很常见,并取决于病

变的位置和严重程度。 表 8 总结了上、下运动神经元

膀胱功能障碍的治疗方法 112。 膀胱护理应包括经常

性的(至少每 12 小时一次)人工挤压膀胱排尿或导尿

与留置导尿相比,勤快地使用无菌技术进行间歇性导

尿会减低尿路感染的风险,与人工挤压膀胱排尿相

比,使用间歇性导尿不会增加感染风险 113,114。

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

第108页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 106 -

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

表7:治疗急性SCI二次伤害的药物制剂

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

针对自由基伤害的药剂

• 维生素E和硒

o 在SCI前对猫进行预处理,可改善神经系统的症状和受伤后的脊髓血流量

• 提拉扎德(21-氨基类固醇) Tirilazad (21-aminosteriod)

o 减少猫咪的脊髓缺血现象

o 没有关于对狗的影响的记录

N- 乙酰半胱氨酸 N-acetylcysteine

o 患有椎间盘突出症的狗的结果没有改善

亚砜和 -氨基己酸 sulfoxide and -aminocaproic acid

o 对狗的症状没有改善

抗氧化剂需要长时间的给药才能在中枢神经系统内达到治疗浓度,这限制了它们在SCI急性期的应用

针对离子紊乱和兴奋中毒的药剂

• 维拉帕米、地尔硫卓、硝苯地平(钙通道拮抗剂) verapamil, diltiazem,nifedipine (calcium channel antagonists)

o 使用地尔硫卓diltiazem和硝苯地平nifedipine可改善猫受伤后的脊髓血流;使用维拉帕米verapamil则不会。

• 钠通道阻断剂 -sodium channel blocker

o 在实验模型中注意到有改善

• NMDA和非NMDA谷氨酸受体拮抗剂

o 延迟给药在啮齿动物模型上改善了组织保护和功能恢复情况

o 大多数都有不良的副作用,而且临床试验基本上都失败了

针对炎症的药剂

• 米诺环素(第二代四环素衍生物) minocycline (2 generation tetracycline derivative)

o 在实验中减少小胶质细胞microgilia和巨噬细胞macrophage的激活

o 尚未在试验中进行评估

• 他克莫司、 环孢素、霉酚酸酯 tarcrolimus, cyclosporine, mycophenolate mofetil

o 实验性损伤模型中的神经保护作用

聚乙二醇(polyethylene glycol)

• 密封受损神经元膜的亲水聚合物

• 对深层疼痛感阴性的狗进行评估;使60%的狗恢复了功能。

• 目前正在进行狗的随机对照试验

4-氨基吡啶 4-aminopyridine

• 钾通道阻断剂

o 通过阻断改善传导(阻断通常会被完整的髓鞘阻断的通道)

• 改善猫的体外传导和前庭反射的情况

39只SCI狗的I期临床试验

o 64%的狗在神经系统功能方面有暂时性的改善

o 副作用很少,但很显著

额外的治疗方法

• 纳洛酮 (鸦片剂受体拮抗剂) Naloxone (opiate receptor antagonist)

o 在人体临床试验中未能产生效益

• 促甲状腺素受体拮抗剂 Thyrotropin -receptor antagonist

o 在犬类临床试验中未能产生效益

• 促红细胞生成素、孕激素和雌激素、 镁、阿托伐他汀、褪黑激素

erythropoietin, progesterone, and estrogen, magnesium, atorvastatin, melatonin

ε ε

nd

第109页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 107 -

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

针对TBI的非药物策略

针对急性SCI的非药物治疗策略

减少脑血容量

将头部抬高 15° 至 30° ,可以减少脑血容量,从而

降低 ICP 和增加 CPP,且不会对脑氧饱和度造成有害

的降低 115。抬高头部时应使用硬的斜板,以避免颈部

弯曲和颈静脉闭塞,升高的角度不应超过 30° ,因为这

可能导致 CPP 下降,并对脑氧合产生相关影响 7

治疗性低体温

产生神经创伤性继发性损伤的许多过程都与温

度相关 116。以 32℃ 至 34℃ (89.6-93.2o F) 为治疗性

低体温疗法的标准,通过减少兴奋性氨基酸(EAAs)的

释放,减少促炎症细胞因子的产生,这降低基础代谢

和脑部代谢,防止细胞凋亡和坏死,并减少脑部水肿

和 BBB 的破坏 117。治疗性低温作为一种次要治疗方

法,适用于人类的颅内高压和癫痫。116,117 然而,它还没

有获得广泛的接受作为创伤性脑损伤的首取治疗方

法,可能是因为它的实施具有挑战性,而且有许多潜

在的并发症 116,117。很少有兽医诊所拥有提供 TH 的设

施,但已经被描述在一只患有创伤性脑损伤相关的长

期发作活动的狗身上的得到成功应用的案例 78。随着

支持 TH 技术和接受此治疗的患者在兽医领域变得更

普遍, 这种疗法可能会获得更多的认可。

减压颅骨切除术

早期开颅手术适用于移除轴外血肿。在处理创伤

性脑损伤病人时,减压性颅骨切除术的作用更具有争

议性。如果进行早期开颅手术,它可以在移除肿物时

表8:治疗膀胱功能障碍的药物制剂

进行预防性治疗, 在后来作为次要的,当医疗处理失

败时进行救援治疗 118。正在进行的 RESCUEicp 试验

的结果可能会对早期减压性颅骨切除术在创伤性脑

损伤患者管理中的作用提供更多的见解 119。

手术通常适用于有中度至重度障碍、神经系统恶

化和 / 或椎体不稳定的患者。关于脊髓创伤手术干预

的最佳时机存在争议。许多创伤性 SCI 患者有椎体外

的损伤,需要初步固定,然而, 对人类创伤性 SCI 患者

的早期手术治疗与预后改善有关 120–122。

椎体骨折和脱位的管理

人类和兽医患者的脊柱骨折的稳定性可以分为三

个部分来评估,该方法把椎体分为背侧、中间和腹侧,当

两个或更多的区间被破坏时,骨折被认为是不稳定的。

表 9 列出了 3 个区间中每个区间所包含的结构 123,124。

手术中的患者通常都有包括中度至重度神经功

能缺损 (例如,运动功能微弱或丧失),影像学上有椎

体不稳定的证据,以及在积极保守治疗下神经功能仍

然恶化 13。

脊髓减压、缩小和固定是手术治疗的目的,有许多

手术技术可以在减压后稳定 VFLs,所选择的技术取决

于椎体内的位置、骨折的类型和外科医生的偏好 123。

稳定技术包括骨板、螺钉 、Steinmann 针 、Kirschner

线和聚甲基丙烯酸甲酯 (Polymethylmethacrylate -

PMMA )水泥 13。 VFLs 应该由获得委员会认证的骨科

医生或神经外科医生来管理和操作,尽管手术治疗通

常是适用的,恢复功能的时间通常较短, 术后支持性

护理通常比保守治疗所需的强度要低,但并发症可能

发生,手术操作有可能导致 SCI 的恶化。

植入物的松动,以及植入物的失败或感染(尤其

是 PMMA), 因此,有时需要进行再次进行手术 13。

原发性损伤的保守治疗最适合于损伤最小、病况

稳定、三个部分的椎体都稳定良好的患者。已有人描

述过使用外固定装置,但这些装置的应用充满了并发

症,包括稳定不足够、 VFL 部位的活动增加,以及擦伤

和溃疡。因此,保守治疗通常包括严格地关在笼子休

息 6 到 8 周 、加上镇痛和护理。

外伤性椎间盘突出症患者不能行走,有进行性神

经功能障碍, 对保守治疗无反应,或颈椎病变引起严

重疼痛, 应考虑手术治疗 34,125,126。对于 III 型(创伤性)

椎间盘疾病,除非有相关的压迫性轴外血肿,否则通

常不需手术治疗。根据椎间盘突出的部位、侧化程度

和严重程度,可能需要进行背侧椎板切除术、半椎板

切除术或腹侧槽手术 13,34,127–132。

保守疗法可用于治疗单纯的病理疼痛

hyperpathia(神经病态疼痛)或有轻微神经功能障碍

的患畜 13,34。建议维持严格的笼内休息至少 4-6 周,尽

管最近的一项回顾性评估显示,在胸腰椎间盘疾病的

治疗中,休息的时间对治疗的结果或生活质量没有影

响 133。保守疗法不适合于根据影像学检查和 / 或失去

深层疼痛感觉(DPP)的病畜 34。

脊髓挫伤和轴外出血

脊髓挫伤是一种沟内出血,它最常见继发于其他

原因的原发损伤,包括 VFLs、椎间盘挤压和穿透性损

伤 13,134。实质性挫伤的治疗目的是治疗同时发生的原

发性损伤(见前面的讨论)13。轴外出血可发生在硬膜

外或硬膜下,并可对脊髓造成直接压迫,有关于它继

发于椎间盘挤压的报道 135–137。对于有压迫性轴外血

肿的病畜,建议采用减压手术 13。

细胞移植疗法

在一项 I 期试验中, 对 9 只因车祸或椎间盘突出

而继发椎体骨折或脱位(VFL) 引起的胸腰部急性脊髓

损伤的狗,进行了脊髓内嗅觉胶质细胞移植的评估(9

只狗中有 8 只是 DPP 阴性)。只有在这一小部分狗中

出现了明显的功能改善,8 只狗中有 7 只的运动功能

得到改善 138。 最近,对 7 只由 VFL 引起的严重急性

SCI 的狗进行了自体骨髓基质细胞移植的安全性调

查 ,发现这种技术是可行的和安全的,且没有发现并

发症。在随访期间 (SCI 后 29-62 个月),7 只狗中有 2

只能够在没有支持的情况下行走 139。虽然这些技术目

前还处于发展的早期阶段,但它们可能代表了一种急

性 SCI 患畜的新疗法。

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

上运动神经元 膀胱

UMN bladder

下运动神经元 膀胱

LMN bladder

- 肾上腺素能拮抗剂

( - adrenergic antagonist)

哌唑嗪( Prazosin)

苯氧苄胺( Phenoxybenzamine)

拟副交感神经-parasympahtomimetic

氨甲酰甲胆碱-Bethanechol

骨骼肌松弛剂

地西泮 diazepam

- 肾上腺素受体激动剂

( - adrenergic agonist)

苯丙醇胺 phenylpropanolamine

α

α

α

α

第110页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 108 -

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

表9:把椎体分为三部分 ,用于评估VFL稳定性

手术通常适用于有中度至重度障碍、神经系统恶

化和 / 或椎体不稳定的患者。关于脊髓创伤手术干预

的最佳时机存在争议。许多创伤性 SCI 患者有椎体外

的损伤,需要初步固定,然而, 对人类创伤性 SCI 患者

的早期手术治疗与预后改善有关 120–122。

椎体骨折和脱位的管理

人类和兽医患者的脊柱骨折的稳定性可以分为三

个部分来评估,该方法把椎体分为背侧、中间和腹侧,当

两个或更多的区间被破坏时,骨折被认为是不稳定的。

表 9 列出了 3 个区间中每个区间所包含的结构 123,124。

手术中的患者通常都有包括中度至重度神经功

能缺损 (例如,运动功能微弱或丧失),影像学上有椎

体不稳定的证据,以及在积极保守治疗下神经功能仍

然恶化 13。

脊髓减压、缩小和固定是手术治疗的目的,有许多

手术技术可以在减压后稳定 VFLs,所选择的技术取决

于椎体内的位置、骨折的类型和外科医生的偏好 123。

稳定技术包括骨板、螺钉 、Steinmann 针 、Kirschner

线和聚甲基丙烯酸甲酯 (Polymethylmethacrylate -

PMMA )水泥 13。 VFLs 应该由获得委员会认证的骨科

医生或神经外科医生来管理和操作,尽管手术治疗通

常是适用的,恢复功能的时间通常较短, 术后支持性

护理通常比保守治疗所需的强度要低,但并发症可能

发生,手术操作有可能导致 SCI 的恶化。

植入物的松动,以及植入物的失败或感染(尤其

是 PMMA), 因此,有时需要进行再次进行手术 13。

原发性损伤的保守治疗最适合于损伤最小、病况

稳定、三个部分的椎体都稳定良好的患者。已有人描

述过使用外固定装置,但这些装置的应用充满了并发

症,包括稳定不足够、 VFL 部位的活动增加,以及擦伤

和溃疡。因此,保守治疗通常包括严格地关在笼子休

息 6 到 8 周 、加上镇痛和护理。

外伤性椎间盘突出症患者不能行走,有进行性神

经功能障碍, 对保守治疗无反应,或颈椎病变引起严

重疼痛, 应考虑手术治疗 34,125,126。对于 III 型(创伤性)

椎间盘疾病,除非有相关的压迫性轴外血肿,否则通

常不需手术治疗。根据椎间盘突出的部位、侧化程度

和严重程度,可能需要进行背侧椎板切除术、半椎板

切除术或腹侧槽手术 13,34,127–132。

保守疗法可用于治疗单纯的病理疼痛

hyperpathia(神经病态疼痛)或有轻微神经功能障碍

的患畜 13,34。建议维持严格的笼内休息至少 4-6 周,尽

管最近的一项回顾性评估显示,在胸腰椎间盘疾病的

治疗中,休息的时间对治疗的结果或生活质量没有影

响 133。保守疗法不适合于根据影像学检查和 / 或失去

深层疼痛感觉(DPP)的病畜 34。

脊髓挫伤和轴外出血

脊髓挫伤是一种沟内出血,它最常见继发于其他

原因的原发损伤,包括 VFLs、椎间盘挤压和穿透性损

伤 13,134。实质性挫伤的治疗目的是治疗同时发生的原

发性损伤(见前面的讨论)13。轴外出血可发生在硬膜

外或硬膜下,并可对脊髓造成直接压迫,有关于它继

发于椎间盘挤压的报道 135–137。对于有压迫性轴外血

肿的病畜,建议采用减压手术 13。

细胞移植疗法

在一项 I 期试验中, 对 9 只因车祸或椎间盘突出

而继发椎体骨折或脱位(VFL) 引起的胸腰部急性脊髓

损伤的狗,进行了脊髓内嗅觉胶质细胞移植的评估(9

只狗中有 8 只是 DPP 阴性)。只有在这一小部分狗中

出现了明显的功能改善,8 只狗中有 7 只的运动功能

得到改善 138。 最近,对 7 只由 VFL 引起的严重急性

SCI 的狗进行了自体骨髓基质细胞移植的安全性调

查 ,发现这种技术是可行的和安全的,且没有发现并

发症。在随访期间 (SCI 后 29-62 个月),7 只狗中有 2

只能够在没有支持的情况下行走 139。虽然这些技术目

前还处于发展的早期阶段,但它们可能代表了一种急

性 SCI 患畜的新疗法。

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

背侧

Dorsal compartmemt

中间

middle compartment

腹侧

ventral compartment

椎弓 vetebral arch

(脊柱突、下关节突, 椎板 laminae, 脊

椎椎根 pedicles)

背部纵向

韧带

腹部的部分

脊柱体

背部韧带复合体

(小面关节囊 , 弧间韧带,棘间韧带,

棘上韧带,韧带)

背部关节环 髓核

横纹肌间韧带 背部皮层的

脊柱体

腹侧

纤维环

腹侧纵行

韧带

第111页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 109 -

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

预后

神经创伤的恢复和预后取决于损伤的严重程度、

损伤的原因、病变的部位以及原发和继发损伤的治疗

时机和疗效 13。患有神经系统创伤的小动物可以出现

明显的神经系统改善,并有巨大的能力来弥补神经系

统的缺陷,因此,无论病人的表现如何,都建议要进行

持续的神经系统重新评估。

MGCS 可用于评估 TBI 狗的康复预后,因为它已

被证明与 48 小时生存率呈线性关系 25。 DPP(deep

pain perception) 的存在一直与急性 SCI 的结果改善

有关。一项评估狗的严重胸腰椎 SCI 的回顾性研究表

明,只有 12% 的 VFL 狗恢复了行走能力,而 69% 患

有椎间盘突出症的狗恢复了运动功能 140。对胸腰椎间

盘突出症和完整的疼痛感觉的病例进行手术治疗结

果是非常好的 ,预期恢复的运动功能为 80% 至 95%

(报告范围为 72% 至 100%)141。

在一项关于手术治疗颈椎间盘突出症的研究中,

总体成功率为 99%126。一项对患有颈椎间盘突出症的

狗的回顾性研究发现,在 90% 的病例中,可以通过保

守治疗 (即非手术治疗)VFLs 具有良好的效果 142。那

些需要手术治疗的病例有很高手术死亡风险(36%)-

即在进行手术后的 30 天内死亡,但在那些在手术后

的 30 天存活下来的病例中, 预后很好(100%), 这项

研究还显示,不能行走和伤后 5 天以上才进行治疗的

病人预后较差 142。对猫的预后研究是有限的,因此大

部分的相关信息都是从狗身上推断出来的 143。

最后,神经创伤很少独立于其他系统性损伤而出

现。因此,在评估预后和指导主人的决策过程中,将病

畜的整个临床情况考虑在内是至关重要的。

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

第112页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 110 -

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

第113页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 111 -

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

第114页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 112 -

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

第115页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 113 -

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

第116页

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

第117页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 115 -

Clinical presentation, diagnostic �indings, prognostic factors, treatment and

outcome in dogs with meningoencephalomyelitis of unknown origin: A review

I. Cornelisa,*, L. Van Hama

, I. Gielenb

, S. De Deckerc

, S.F.M. Bhattia

摘要:

病因不明性脑膜脑脊髓炎(MUO)指的是一组特发性,很可能是免疫介导

的炎症性中枢神经系统疾病,使兽医神经学家面临临床、诊断和治疗的挑

战。目前可以获得这种假定诊断的临床标准,以前在小型(前瞻性或回顾性)

病例系列中研究了多种治疗方案。由于这类疾病如果不得到及时治疗将会被

认为是致命的,因此确定临床可用的预后指标可能具有很大的价值。本文综

述了诊断患有MUO犬的临床表现、诊断结果、可能的预后因素、治疗和结

果方面的最新进展。

关键词:犬、肉芽肿性脑膜脑脊髓炎、病因不明性脑膜脑炎、坏死性脑白质

炎、坏死性脑膜脑脊髓炎

译者:高健(北京芭比堂国际动物医疗中心) a

Small Animal Department, Faculty

of Veterinary Medicine, Ghent

University, Merelbeke, Belgium

b

Department of Medical Imaging

and Small Animal Orthopaedics,

Faculty of Veterinary Medicine,

Ghent University, Merelbeke,

Belgium

c

Clinical Science and Services, The

Royal Veterinary College,

University of London, Hat�ield,

United Kingdom

综述:犬不明原因的脑膜炎脑脊髓炎的临床表现,

诊断结果,预后因素,治疗和结果

Doi:10.1016/j.radi.2010.11.001

病因不明性脑膜脑脊髓炎(MUO)指的是一组特

发性、非感染性中枢神经系统(CNS)疾病(Talarico

and Schatzberg, 2010; Coates and Jeffery, 2014)。

值得注意的是,术语MUO与MUA(aetiology病因学)

和MUE(病因学etiology)是同义的,并且所有术语在

整篇文献中相互混杂。这组特发性非感染性脑膜炎

脑脊髓炎(NIME)分为几个亚型,包括类固醇反应性

脑膜炎-动脉炎(steroid responsive meningitis-arteritis,SRMA)、嗜酸性粒细胞性脑膜脑炎(eosinophilic meningoencephalitis,EME)、肉芽肿性脑膜

脑脊髓炎(granulomatous meningoencephalomyelitis,GME)和坏死性脑炎(necrotizing encephalitis,NE;包括坏死性脑膜脑脊髓炎(necrotizing

meningoencephalomyelitis,NME)和坏死性白质脑炎

(necrotizing leucoencephalitis,NLE))。由于SRMA和

EME具有相当明显的诊断特征,因此引入MUO一词

介绍

来涵盖只能通过组织病理学证实的NIME三种特定亚

型,包括GME、NME和NLE (Granger et al., 2010;

Talarico and Schatzberg, 2010; Coates and Jeffery,

2014)。目前还没有关于犬类MUO的总体发病率的

统计数据,但早期的报告引用了GME在犬所有中枢

神经系统疾病中的不一的发病率5-25%(Braund,

1985; Tipold, 1995)。

通常,MUO的诊断是根据动物特征、神经学检

查结果、磁共振成像(MRI)发现和脑脊液(CSF)分析

相结合得出的(Munana and Luttgen, 1998; Adamo

et al., 2007; Granger et al., 2010; Talarico and

Schatzberg, 2010; Coates and Jeffery, 2014),尽管

这些检查结果可能在不同的研究和病患之间存在很

大差异(Wong et al., 2010)。

这组疾病的诊断和治疗都使兽医面临挑战。如

果不开始恰当的治疗,这种疾病被认为是致命的

(Munana and Luttgen, 1998; Granger et al., 2010),

最近的一些研究评估了不同的治疗方式和潜在的预

后因素。

病因学

MUO 的确切病因学和病理生理学目前尚不清

楚,最新的一些理论在最近的一些文献综述中进行了

讨论 (Coates and Jeffery, 2014)。虽然 MUO 很可能

有多因素发病机制,但遗传倾向性和触发过度免疫反

应的因素的结合被认为是最重要的 (Kipar et al.,

1998; Talarico and Schatzberg, 2010; Flegel et al.,

2011; Coates and Jeffery, 2014)。可疑的诱因包括环

境因素和各类感染性抗原 (Schatzberg et al., 2005;

Greer et al., 2010; Barber et al., 2012)。结 合 这 组 疾

病对免疫抑制治疗的普遍积极反应等信息,表明了诱

发 MUO 的因素是免疫介导性疾病 (Wong et al.,

2010),因此,药物治疗的基石是免疫抑制治疗 (Kipar

et al.,1998; Talarico and Schatzberg, 2010; Coates

and Jeffery, 2014)。

临床表现

中年玩具品种犬和㹴犬易患 GME (Munana and

Luttgen, 1998; Adamo et al., 2007; Talarico and

Schatzberg, 2010); 而 NE 主要侵袭较小体型的玩具

品种和小型犬,包括巴哥犬、约克夏㹴、马尔济斯犬、

吉娃娃、北京犬、蝴蝶犬、西施犬、图莱亚尔绒毛犬和

布鲁塞尔格里芬犬 (Talarico and Schatzberg, 2010;

Cooper et al., 2014)。然而,任何品种和年龄的犬都

可 能 受 到 侵 袭 (Granger et al., 2010; Coates and

Jeffery, 2014);最近的一项研究显示,25% 诊断患有

MUO 的犬是大型犬 (>15kg; Cornelis et al., 2016b)。

通过对 173 例 GME、53 例 MUO 和 69 例 NE 的

数据统计分析,发现 GME 和 NE 的年龄分布有显著差

异;有 NE 的犬主要小于 4 岁,而 GME 的峰值年龄为

4-8 岁 (Granger et al., 2010)。在一组 60 例患 NE 巴哥

犬中 (Levine et al., 2008),诊断时的中位年龄为 18 个

月。在一组 5 例 NE 的吉娃娃 (Higgins et al., 2008) 中,

诊断时的中位年龄为 5 岁。在巴哥犬中,与深色雄性相

比,浅褐色雌性更常被诊断患有 NME (Greer et al.,

2010)。尽管普遍认为 GME 中雌性占多数 (Russo,

1979; Braund, 1985; Bailey and Higgins, 1986; Sorjonen, 1990; Munana and Luttgen, 1998),在较近期的

研 究 中,雌 雄 比 例 没 有 统 计 学 差 异 (Talarico and

Schatzberg, 2010; Granger et al., 2010; Cornelis et al.,

2016a,b)。

曾经 GME 的组织学分布有描述三种模式:多灶

型或弥散型、局灶型和眼型 (Cuddon and Smith-Maxie, 1984;Braund,1985; Sorjonen, 1990)。每一种分布型

都与不同的临床表现有关,包括多灶型 GME 犬的急性

发作和快速渐进性发展,局灶型 GME 犬的发展更隐匿

或更缓慢渐进性,以及眼型 GME 犬的视觉功能障碍的

急 性 症 状 (Braund,1985; Sorjonen,1990; Zarfoss et

al.,2006;Talarico and Schatzberg, 2009; Coates and

Jeffery, 2014)。

神经外症状很少见,但发热偶尔会伴随于中枢

神经系统炎症(Talarico and Schatzberg, 2010)。常

见的实验室检查(血常规、生化、尿分析)往往在正常

参考范围内(Thomas and Eger, 1989; Sorjonen,

1990; Tipold, 1995)。

在神经学检查中,疾病定位分类如下:a) GME

以前脑、脑干或多灶型病变为主;b) MUO 以多灶型

( 前脑、脑干 ) 或多灶型为主;或 c)NE 以前脑为主

(Granger et al., 2010; Talarico and Schatzberg,

2010; Coates and Jeffery, 2014; Cornelis et al.,

2016a)。与小型犬相比,大型犬更容易出现可识别的

意识状态下降 (Cornelis et al., 2016b)。8% 被诊断为

GME 的 犬 表 现 出 提 示 脊 髓 病 的 神 经 功 能 缺 陷

(Granger et al., 2010)。脊髓病可定位于脊髓的任何

部位,临床表现从全身性本体感受性共济失调到轻瘫

或麻痹;常见发现有脊髓过度敏感 (Griffin et al.,

2008; Wong et al., 2010; Cornelis et al., 2017a)。

诊断发现

如前所述,MUO 是一种临床诊断,可基于动物

特征、神经学检查结果、颅内横断面影像异常和脑脊

液分析获得 (Munana and Luttgen,1998; Adamo et

al.,2007; Talarico and Schatzberg, 2010; Coates

and Jeffery,2014)。Granger 等人 (2010) 系统性地回

顾了 457 例已发表的 NIME 病例 ( 包括 MUO、GME

和 NE),并制定了招募没有组织病理学诊断的 MUO

病例的指南。已确定以下四项纳入标准 : (1) 年龄大

于 6 个月的犬 ; (2) T2W MR 影像上表现为多发、单

发或弥漫性轴内高强度信号 ; (3) 脑脊液分析表现出

脑脊液细胞增多,且单核细胞 / 淋巴细胞 >50%; (4)

排除特定地理区域内常见的传染病 (Granger et al.,

2010)。如前所述,只有通过组织病理学检查才能获

得明确诊断 (Uchida et al., 2016)。

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

第118页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 116 -

病因不明性脑膜脑脊髓炎(MUO)指的是一组特

发性、非感染性中枢神经系统(CNS)疾病(Talarico

and Schatzberg, 2010; Coates and Jeffery, 2014)。

值得注意的是,术语MUO与MUA(aetiology病因学)

和MUE(病因学etiology)是同义的,并且所有术语在

整篇文献中相互混杂。这组特发性非感染性脑膜炎

脑脊髓炎(NIME)分为几个亚型,包括类固醇反应性

脑膜炎-动脉炎(steroid responsive meningitis-arteritis,SRMA)、嗜酸性粒细胞性脑膜脑炎(eosinophilic meningoencephalitis,EME)、肉芽肿性脑膜

脑脊髓炎(granulomatous meningoencephalomyelitis,GME)和坏死性脑炎(necrotizing encephalitis,NE;包括坏死性脑膜脑脊髓炎(necrotizing

meningoencephalomyelitis,NME)和坏死性白质脑炎

(necrotizing leucoencephalitis,NLE))。由于SRMA和

EME具有相当明显的诊断特征,因此引入MUO一词

来涵盖只能通过组织病理学证实的NIME三种特定亚

型,包括GME、NME和NLE (Granger et al., 2010;

Talarico and Schatzberg, 2010; Coates and Jeffery,

2014)。目前还没有关于犬类MUO的总体发病率的

统计数据,但早期的报告引用了GME在犬所有中枢

神经系统疾病中的不一的发病率5-25%(Braund,

1985; Tipold, 1995)。

通常,MUO的诊断是根据动物特征、神经学检

查结果、磁共振成像(MRI)发现和脑脊液(CSF)分析

相结合得出的(Munana and Luttgen, 1998; Adamo

et al., 2007; Granger et al., 2010; Talarico and

Schatzberg, 2010; Coates and Jeffery, 2014),尽管

这些检查结果可能在不同的研究和病患之间存在很

大差异(Wong et al., 2010)。

这组疾病的诊断和治疗都使兽医面临挑战。如

果不开始恰当的治疗,这种疾病被认为是致命的

(Munana and Luttgen, 1998; Granger et al., 2010),

最近的一些研究评估了不同的治疗方式和潜在的预

后因素。

病因学

MUO 的确切病因学和病理生理学目前尚不清

楚,最新的一些理论在最近的一些文献综述中进行了

讨论 (Coates and Jeffery, 2014)。虽然 MUO 很可能

有多因素发病机制,但遗传倾向性和触发过度免疫反

应的因素的结合被认为是最重要的 (Kipar et al.,

1998; Talarico and Schatzberg, 2010; Flegel et al.,

2011; Coates and Jeffery, 2014)。可疑的诱因包括环

境因素和各类感染性抗原 (Schatzberg et al., 2005;

Greer et al., 2010; Barber et al., 2012)。结 合 这 组 疾

病对免疫抑制治疗的普遍积极反应等信息,表明了诱

发 MUO 的因素是免疫介导性疾病 (Wong et al.,

2010),因此,药物治疗的基石是免疫抑制治疗 (Kipar

et al.,1998; Talarico and Schatzberg, 2010; Coates

and Jeffery, 2014)。

临床表现

中年玩具品种犬和㹴犬易患 GME (Munana and

Luttgen, 1998; Adamo et al., 2007; Talarico and

Schatzberg, 2010); 而 NE 主要侵袭较小体型的玩具

品种和小型犬,包括巴哥犬、约克夏㹴、马尔济斯犬、

吉娃娃、北京犬、蝴蝶犬、西施犬、图莱亚尔绒毛犬和

布鲁塞尔格里芬犬 (Talarico and Schatzberg, 2010;

Cooper et al., 2014)。然而,任何品种和年龄的犬都

可 能 受 到 侵 袭 (Granger et al., 2010; Coates and

Jeffery, 2014);最近的一项研究显示,25% 诊断患有

MUO 的犬是大型犬 (>15kg; Cornelis et al., 2016b)。

通过对 173 例 GME、53 例 MUO 和 69 例 NE 的

数据统计分析,发现 GME 和 NE 的年龄分布有显著差

异;有 NE 的犬主要小于 4 岁,而 GME 的峰值年龄为

4-8 岁 (Granger et al., 2010)。在一组 60 例患 NE 巴哥

犬中 (Levine et al., 2008),诊断时的中位年龄为 18 个

月。在一组 5 例 NE 的吉娃娃 (Higgins et al., 2008) 中,

诊断时的中位年龄为 5 岁。在巴哥犬中,与深色雄性相

比,浅褐色雌性更常被诊断患有 NME (Greer et al.,

2010)。尽管普遍认为 GME 中雌性占多数 (Russo,

1979; Braund, 1985; Bailey and Higgins, 1986; Sorjonen, 1990; Munana and Luttgen, 1998),在较近期的

研 究 中,雌 雄 比 例 没 有 统 计 学 差 异 (Talarico and

Schatzberg, 2010; Granger et al., 2010; Cornelis et al.,

2016a,b)。

曾经 GME 的组织学分布有描述三种模式:多灶

型或弥散型、局灶型和眼型 (Cuddon and Smith-Maxie, 1984;Braund,1985; Sorjonen, 1990)。每一种分布型

都与不同的临床表现有关,包括多灶型 GME 犬的急性

发作和快速渐进性发展,局灶型 GME 犬的发展更隐匿

或更缓慢渐进性,以及眼型 GME 犬的视觉功能障碍的

急 性 症 状 (Braund,1985; Sorjonen,1990; Zarfoss et

al.,2006;Talarico and Schatzberg, 2009; Coates and

Jeffery, 2014)。

神经外症状很少见,但发热偶尔会伴随于中枢

神经系统炎症(Talarico and Schatzberg, 2010)。常

见的实验室检查(血常规、生化、尿分析)往往在正常

参考范围内(Thomas and Eger, 1989; Sorjonen,

1990; Tipold, 1995)。

在神经学检查中,疾病定位分类如下:a) GME

以前脑、脑干或多灶型病变为主;b) MUO 以多灶型

( 前脑、脑干 ) 或多灶型为主;或 c)NE 以前脑为主

(Granger et al., 2010; Talarico and Schatzberg,

2010; Coates and Jeffery, 2014; Cornelis et al.,

2016a)。与小型犬相比,大型犬更容易出现可识别的

意识状态下降 (Cornelis et al., 2016b)。8% 被诊断为

GME 的 犬 表 现 出 提 示 脊 髓 病 的 神 经 功 能 缺 陷

(Granger et al., 2010)。脊髓病可定位于脊髓的任何

部位,临床表现从全身性本体感受性共济失调到轻瘫

或麻痹;常见发现有脊髓过度敏感 (Griffin et al.,

2008; Wong et al., 2010; Cornelis et al., 2017a)。

诊断发现

如前所述,MUO 是一种临床诊断,可基于动物

特征、神经学检查结果、颅内横断面影像异常和脑脊

液分析获得 (Munana and Luttgen,1998; Adamo et

al.,2007; Talarico and Schatzberg, 2010; Coates

and Jeffery,2014)。Granger 等人 (2010) 系统性地回

顾了 457 例已发表的 NIME 病例 ( 包括 MUO、GME

和 NE),并制定了招募没有组织病理学诊断的 MUO

病例的指南。已确定以下四项纳入标准 : (1) 年龄大

于 6 个月的犬 ; (2) T2W MR 影像上表现为多发、单

发或弥漫性轴内高强度信号 ; (3) 脑脊液分析表现出

脑脊液细胞增多,且单核细胞 / 淋巴细胞 >50%; (4)

排除特定地理区域内常见的传染病 (Granger et al.,

2010)。如前所述,只有通过组织病理学检查才能获

得明确诊断 (Uchida et al., 2016)。

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

第119页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 111 -

图1:组织学病理诊断为GME的6岁雌性未绝育金毛寻回猎犬的丘脑间连结的T2W矢状面(A)和T2W横断面(B) 和FLAIR横断面(C)。注意T2W

和FLAIR图像上的弥漫性高强度信号影响到灰质(包括皮质和深灰质)和白质,累及前脑(颞叶)和脑干(图片由伦敦大学皇家兽医学院提供)。

病因不明性脑膜脑脊髓炎(MUO)指的是一组特

发性、非感染性中枢神经系统(CNS)疾病(Talarico

and Schatzberg, 2010; Coates and Jeffery, 2014)。

值得注意的是,术语MUO与MUA(aetiology病因学)

和MUE(病因学etiology)是同义的,并且所有术语在

整篇文献中相互混杂。这组特发性非感染性脑膜炎

脑脊髓炎(NIME)分为几个亚型,包括类固醇反应性

脑膜炎-动脉炎(steroid responsive meningitis-arteritis,SRMA)、嗜酸性粒细胞性脑膜脑炎(eosinophilic meningoencephalitis,EME)、肉芽肿性脑膜

脑脊髓炎(granulomatous meningoencephalomyelitis,GME)和坏死性脑炎(necrotizing encephalitis,NE;包括坏死性脑膜脑脊髓炎(necrotizing

meningoencephalomyelitis,NME)和坏死性白质脑炎

(necrotizing leucoencephalitis,NLE))。由于SRMA和

EME具有相当明显的诊断特征,因此引入MUO一词

来涵盖只能通过组织病理学证实的NIME三种特定亚

型,包括GME、NME和NLE (Granger et al., 2010;

Talarico and Schatzberg, 2010; Coates and Jeffery,

2014)。目前还没有关于犬类MUO的总体发病率的

统计数据,但早期的报告引用了GME在犬所有中枢

神经系统疾病中的不一的发病率5-25%(Braund,

1985; Tipold, 1995)。

通常,MUO的诊断是根据动物特征、神经学检

查结果、磁共振成像(MRI)发现和脑脊液(CSF)分析

相结合得出的(Munana and Luttgen, 1998; Adamo

et al., 2007; Granger et al., 2010; Talarico and

Schatzberg, 2010; Coates and Jeffery, 2014),尽管

这些检查结果可能在不同的研究和病患之间存在很

大差异(Wong et al., 2010)。

这组疾病的诊断和治疗都使兽医面临挑战。如

果不开始恰当的治疗,这种疾病被认为是致命的

(Munana and Luttgen, 1998; Granger et al., 2010),

最近的一些研究评估了不同的治疗方式和潜在的预

后因素。

病因学

MUO 的确切病因学和病理生理学目前尚不清

楚,最新的一些理论在最近的一些文献综述中进行了

讨论 (Coates and Jeffery, 2014)。虽然 MUO 很可能

有多因素发病机制,但遗传倾向性和触发过度免疫反

应的因素的结合被认为是最重要的 (Kipar et al.,

1998; Talarico and Schatzberg, 2010; Flegel et al.,

2011; Coates and Jeffery, 2014)。可疑的诱因包括环

境因素和各类感染性抗原 (Schatzberg et al., 2005;

Greer et al., 2010; Barber et al., 2012)。结 合 这 组 疾

病对免疫抑制治疗的普遍积极反应等信息,表明了诱

发 MUO 的因素是免疫介导性疾病 (Wong et al.,

2010),因此,药物治疗的基石是免疫抑制治疗 (Kipar

et al.,1998; Talarico and Schatzberg, 2010; Coates

and Jeffery, 2014)。

临床表现

中年玩具品种犬和㹴犬易患 GME (Munana and

Luttgen, 1998; Adamo et al., 2007; Talarico and

Schatzberg, 2010); 而 NE 主要侵袭较小体型的玩具

品种和小型犬,包括巴哥犬、约克夏㹴、马尔济斯犬、

吉娃娃、北京犬、蝴蝶犬、西施犬、图莱亚尔绒毛犬和

布鲁塞尔格里芬犬 (Talarico and Schatzberg, 2010;

Cooper et al., 2014)。然而,任何品种和年龄的犬都

可 能 受 到 侵 袭 (Granger et al., 2010; Coates and

Jeffery, 2014);最近的一项研究显示,25% 诊断患有

MUO 的犬是大型犬 (>15kg; Cornelis et al., 2016b)。

通过对 173 例 GME、53 例 MUO 和 69 例 NE 的

数据统计分析,发现 GME 和 NE 的年龄分布有显著差

异;有 NE 的犬主要小于 4 岁,而 GME 的峰值年龄为

4-8 岁 (Granger et al., 2010)。在一组 60 例患 NE 巴哥

犬中 (Levine et al., 2008),诊断时的中位年龄为 18 个

月。在一组 5 例 NE 的吉娃娃 (Higgins et al., 2008) 中,

诊断时的中位年龄为 5 岁。在巴哥犬中,与深色雄性相

比,浅褐色雌性更常被诊断患有 NME (Greer et al.,

2010)。尽管普遍认为 GME 中雌性占多数 (Russo,

1979; Braund, 1985; Bailey and Higgins, 1986; Sorjonen, 1990; Munana and Luttgen, 1998),在较近期的

研 究 中,雌 雄 比 例 没 有 统 计 学 差 异 (Talarico and

Schatzberg, 2010; Granger et al., 2010; Cornelis et al.,

2016a,b)。

曾经 GME 的组织学分布有描述三种模式:多灶

型或弥散型、局灶型和眼型 (Cuddon and Smith-Maxie, 1984;Braund,1985; Sorjonen, 1990)。每一种分布型

都与不同的临床表现有关,包括多灶型 GME 犬的急性

发作和快速渐进性发展,局灶型 GME 犬的发展更隐匿

或更缓慢渐进性,以及眼型 GME 犬的视觉功能障碍的

急 性 症 状 (Braund,1985; Sorjonen,1990; Zarfoss et

al.,2006;Talarico and Schatzberg, 2009; Coates and

Jeffery, 2014)。

神经外症状很少见,但发热偶尔会伴随于中枢

神经系统炎症(Talarico and Schatzberg, 2010)。常

见的实验室检查(血常规、生化、尿分析)往往在正常

参考范围内(Thomas and Eger, 1989; Sorjonen,

1990; Tipold, 1995)。

在神经学检查中,疾病定位分类如下:a) GME

以前脑、脑干或多灶型病变为主;b) MUO 以多灶型

( 前脑、脑干 ) 或多灶型为主;或 c)NE 以前脑为主

(Granger et al., 2010; Talarico and Schatzberg,

2010; Coates and Jeffery, 2014; Cornelis et al.,

2016a)。与小型犬相比,大型犬更容易出现可识别的

意识状态下降 (Cornelis et al., 2016b)。8% 被诊断为

GME 的 犬 表 现 出 提 示 脊 髓 病 的 神 经 功 能 缺 陷

(Granger et al., 2010)。脊髓病可定位于脊髓的任何

部位,临床表现从全身性本体感受性共济失调到轻瘫

或麻痹;常见发现有脊髓过度敏感 (Griffin et al.,

2008; Wong et al., 2010; Cornelis et al., 2017a)。

诊断发现

如前所述,MUO 是一种临床诊断,可基于动物

特征、神经学检查结果、颅内横断面影像异常和脑脊

液分析获得 (Munana and Luttgen,1998; Adamo et

al.,2007; Talarico and Schatzberg, 2010; Coates

and Jeffery,2014)。Granger 等人 (2010) 系统性地回

顾了 457 例已发表的 NIME 病例 ( 包括 MUO、GME

和 NE),并制定了招募没有组织病理学诊断的 MUO

病例的指南。已确定以下四项纳入标准 : (1) 年龄大

于 6 个月的犬 ; (2) T2W MR 影像上表现为多发、单

发或弥漫性轴内高强度信号 ; (3) 脑脊液分析表现出

脑脊液细胞增多,且单核细胞 / 淋巴细胞 >50%; (4)

排除特定地理区域内常见的传染病 (Granger et al.,

2010)。如前所述,只有通过组织病理学检查才能获

得明确诊断 (Uchida et al., 2016)。

横断面影像

据报道,MRI 在检测大脑异常方面的敏感性为

94.4%,特异性为 95.5%,在肿瘤性和炎症性疾病的分

类方面也有同样高度的表现。相比之下,MRI 对脑血

管疾病分类的敏感性仅为 38.9% (Wolff et al., 2012)。

值得注意的是,在一项研究中,多达 7% 的犬 (2/25 例

,一例诊断为 GME,另一例诊断为 MUO) 在 T2W MR

图 像 中 没 有 显 示 异 常 (Talarico and Schatzberg,

2010; Granger et al., 2010),如果没有组织病理学证

据,可能会导致类似病例不被纳入前瞻性研究或回顾

性 研 究。同 样 在 CT 成 像 方 面,研 究 显 示 高 达

14%(5/36 例 犬,未 指 定 具 体 诊 断 ) 未 发 现 异 常

(Granger et al., 2010)。总的来说,影像学在识别神经

系统检查怀疑的所有炎症性异常方面的敏感性仍然

很低 (<60%; Granger et al., 2010)。此外,在一项研究

中,只有 76% 的脑脊液炎性病变病例出现 MRI 异常

(19/25 例犬 ; Lamb et al., 2005)。虽然使用横断面成

像可能有助于区分不同类型的特发性脑膜脑炎

(Talarico and Schatzberg, 2010),但目前没有关于使

用 MRI 鉴别组织病理学证实的 GME、NME 和 NLE 病

例的信息。

一项研究特别关注了 11 例组织病理学证实为

GME 的犬的 MRI 检查结果 (Cherubini et al.,2006)。

局灶型、多灶型或弥漫型的 T2W 和 FLAIR 高强度信

号分布于前脑、脑干或小脑 ( 图 1)。异常散在分布于

灰质和白质,在 T1 加权 (T1W) 图像上表现为不同强

度 信号,增强程度不同。T2W 图像通常提示白质内血

管源性水肿,脑膜强化通常不明显,即使有也很轻微

(Cherubini et al., 2006; Talarico and Schatzberg,

2010; Coates and Jeffery, 2014)。MR 影像病变的分

布 ( 位于灰质或白质 ) 与组织病理学结果一致

(Cherubini et al., 2006)。

报道的 NME 犬最常见的 MRI 异常是不对称、多

灶性和位于前脑的病变 ( 更严重的病变位于顶叶和枕

叶 );T2W、FLAIR 高强度信号 ; 通常影响皮质灰质和

皮质下白质,在 T1W 增强后图像上灰质 / 白质界限

丧失,实质病变的对比增强程度不同 (Flegel et al.,

2008; Young et al., 2009; Talarico and Schatzberg,

2010; 图 2)。然而,在一项研究中,分别有 4/18 例和

3/18 例发现小脑和脑干病变 (Young et al., 2009)。脑

膜强化也可出现,伴有肿物效应和不同程度的脑室增

大 (Coates and Jeffery, 2014)。

在 NLE 中,发现了多处不对称的大脑白质和脑干

病变 (von Praun et al., 2006)。这些病变在 T2W 和

FLAIR 上表现为典型的高强度信号,常包括多个囊性

坏死区域。在两项已报道的研究中,实质异常的对比

度增强很少 (Talarico and Schatzberg, 2010; Coates

and Jeffery, 2014)。第三项研究显示未见脑膜强化和

肿物效应,但伴有不同程度的脑室增大 (Coates 和

Jeffery, 2014; 图 3)。

已有报道 57 例犬患有不明病因性脑膜脊髓炎,

包括 3 例经组织病理学证实为 GME 的犬 (Cherubini

et al., 2006; Griffin et al., 2008; Wong et al., 2010;

Cornelis et al., 2017a)。57 例中有 36 例使用不同类型

的影像学检查结果。12 例犬单独进行了(X 线片)脊髓

造影或计算机断层扫描 (CT) 的脊髓造影;11 例犬未

发现异常,1 例犬腹侧硬膜外脊髓受压 (Wong et al.,

2010)。对 25 例犬进行了 MRI 检查,其中 3 例犬未发

现异常,6 例犬出现多灶性边界不清晰的髓内 T2W 高

强度信号,增强程度不一,在 16 例犬的髓内 T2W 高

强度信号和 T1W 等强度信号的异常中,脊髓实质病

变和 / 或覆盖脑膜的不同对比度增强 (Cherubini et

al., 2006; Wong et al., 2010; Cornelis et al., 2017a)。

其他成像方式,包括 NME 的正电子发射断层扫

描 (PET), MUO 的氟脱氧葡萄糖 PET (FDG-PET) 和

单体素质子磁共振波谱 (1H MRS),以及 GME 的经颅

超声检查结果,被研究作为诊断方式 (Eom et al.,

2008; Kang et al., 2010; Carvalho et al., 2012; Carrera et al., 2016)。然而,需要更大样本量的进一步研究

来评估这些成像方式的临床用途。

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

第120页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 118 -

横断面影像

据报道,MRI 在检测大脑异常方面的敏感性为

94.4%,特异性为 95.5%,在肿瘤性和炎症性疾病的分

类方面也有同样高度的表现。相比之下,MRI 对脑血

管疾病分类的敏感性仅为 38.9% (Wolff et al., 2012)。

值得注意的是,在一项研究中,多达 7% 的犬 (2/25 例

,一例诊断为 GME,另一例诊断为 MUO) 在 T2W MR

图 像 中 没 有 显 示 异 常 (Talarico and Schatzberg,

2010; Granger et al., 2010),如果没有组织病理学证

据,可能会导致类似病例不被纳入前瞻性研究或回顾

性 研 究。同 样 在 CT 成 像 方 面,研 究 显 示 高 达

14%(5/36 例 犬,未 指 定 具 体 诊 断 ) 未 发 现 异 常

(Granger et al., 2010)。总的来说,影像学在识别神经

系统检查怀疑的所有炎症性异常方面的敏感性仍然

很低 (<60%; Granger et al., 2010)。此外,在一项研究

中,只有 76% 的脑脊液炎性病变病例出现 MRI 异常

(19/25 例犬 ; Lamb et al., 2005)。虽然使用横断面成

像可能有助于区分不同类型的特发性脑膜脑炎

(Talarico and Schatzberg, 2010),但目前没有关于使

用 MRI 鉴别组织病理学证实的 GME、NME 和 NLE 病

例的信息。

一项研究特别关注了 11 例组织病理学证实为

GME 的犬的 MRI 检查结果 (Cherubini et al.,2006)。

局灶型、多灶型或弥漫型的 T2W 和 FLAIR 高强度信

号分布于前脑、脑干或小脑 ( 图 1)。异常散在分布于

灰质和白质,在 T1 加权 (T1W) 图像上表现为不同强

度 信号,增强程度不同。T2W 图像通常提示白质内血

管源性水肿,脑膜强化通常不明显,即使有也很轻微

(Cherubini et al., 2006; Talarico and Schatzberg,

2010; Coates and Jeffery, 2014)。MR 影像病变的分

布 ( 位于灰质或白质 ) 与组织病理学结果一致

(Cherubini et al., 2006)。

图2:组织学病理诊断为NME的2岁雌性马尔济斯犬丘脑间连结的T2W矢状面(A)和T2W横断面(B) 以及FLAIR横断面(C)。T2W和FLAIR像可

见弥漫性前脑高强度信号影响皮质灰质和皮质下白质,累及额叶、颞叶和顶叶。可观察到造成脑沟纹理丧失和右侧脑室闭塞的肿物效应

。在本例中,脑深部灰质、脑干和小脑似乎未受影响(图片由伦敦大学皇家兽医学院提供)。

报道的 NME 犬最常见的 MRI 异常是不对称、多

灶性和位于前脑的病变 ( 更严重的病变位于顶叶和枕

叶 );T2W、FLAIR 高强度信号 ; 通常影响皮质灰质和

皮质下白质,在 T1W 增强后图像上灰质 / 白质界限

丧失,实质病变的对比增强程度不同 (Flegel et al.,

2008; Young et al., 2009; Talarico and Schatzberg,

2010; 图 2)。然而,在一项研究中,分别有 4/18 例和

3/18 例发现小脑和脑干病变 (Young et al., 2009)。脑

膜强化也可出现,伴有肿物效应和不同程度的脑室增

大 (Coates and Jeffery, 2014)。

在 NLE 中,发现了多处不对称的大脑白质和脑干

病变 (von Praun et al., 2006)。这些病变在 T2W 和

FLAIR 上表现为典型的高强度信号,常包括多个囊性

坏死区域。在两项已报道的研究中,实质异常的对比

度增强很少 (Talarico and Schatzberg, 2010; Coates

and Jeffery, 2014)。第三项研究显示未见脑膜强化和

肿物效应,但伴有不同程度的脑室增大 (Coates 和

Jeffery, 2014; 图 3)。

已有报道 57 例犬患有不明病因性脑膜脊髓炎,

包括 3 例经组织病理学证实为 GME 的犬 (Cherubini

et al., 2006; Griffin et al., 2008; Wong et al., 2010;

Cornelis et al., 2017a)。57 例中有 36 例使用不同类型

的影像学检查结果。12 例犬单独进行了(X 线片)脊髓

造影或计算机断层扫描 (CT) 的脊髓造影;11 例犬未

发现异常,1 例犬腹侧硬膜外脊髓受压 (Wong et al.,

2010)。对 25 例犬进行了 MRI 检查,其中 3 例犬未发

现异常,6 例犬出现多灶性边界不清晰的髓内 T2W 高

强度信号,增强程度不一,在 16 例犬的髓内 T2W 高

强度信号和 T1W 等强度信号的异常中,脊髓实质病

变和 / 或覆盖脑膜的不同对比度增强 (Cherubini et

al., 2006; Wong et al., 2010; Cornelis et al., 2017a)。

其他成像方式,包括 NME 的正电子发射断层扫

描 (PET), MUO 的氟脱氧葡萄糖 PET (FDG-PET) 和

单体素质子磁共振波谱 (1H MRS),以及 GME 的经颅

超声检查结果,被研究作为诊断方式 (Eom et al.,

2008; Kang et al., 2010; Carvalho et al., 2012; Carrera et al., 2016)。然而,需要更大样本量的进一步研究

来评估这些成像方式的临床用途。

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

第121页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 119 -

图3:组织学病理诊断为NLE的4岁雄性已绝育拉布拉多犬丘脑间连结的T2W矢状面(A)和T2W横断面(B) 和FLAIR横断面(C)。注意多发性高

强度信号,主要影响了脑白质和脑干。囊性区域遍布前脑白质(图片由伦敦大学皇家兽医学院提供)。

横断面影像

据报道,MRI 在检测大脑异常方面的敏感性为

94.4%,特异性为 95.5%,在肿瘤性和炎症性疾病的分

类方面也有同样高度的表现。相比之下,MRI 对脑血

管疾病分类的敏感性仅为 38.9% (Wolff et al., 2012)。

值得注意的是,在一项研究中,多达 7% 的犬 (2/25 例

,一例诊断为 GME,另一例诊断为 MUO) 在 T2W MR

图 像 中 没 有 显 示 异 常 (Talarico and Schatzberg,

2010; Granger et al., 2010),如果没有组织病理学证

据,可能会导致类似病例不被纳入前瞻性研究或回顾

性 研 究。同 样 在 CT 成 像 方 面,研 究 显 示 高 达

14%(5/36 例 犬,未 指 定 具 体 诊 断 ) 未 发 现 异 常

(Granger et al., 2010)。总的来说,影像学在识别神经

系统检查怀疑的所有炎症性异常方面的敏感性仍然

很低 (<60%; Granger et al., 2010)。此外,在一项研究

中,只有 76% 的脑脊液炎性病变病例出现 MRI 异常

(19/25 例犬 ; Lamb et al., 2005)。虽然使用横断面成

像可能有助于区分不同类型的特发性脑膜脑炎

(Talarico and Schatzberg, 2010),但目前没有关于使

用 MRI 鉴别组织病理学证实的 GME、NME 和 NLE 病

例的信息。

一项研究特别关注了 11 例组织病理学证实为

GME 的犬的 MRI 检查结果 (Cherubini et al.,2006)。

局灶型、多灶型或弥漫型的 T2W 和 FLAIR 高强度信

号分布于前脑、脑干或小脑 ( 图 1)。异常散在分布于

灰质和白质,在 T1 加权 (T1W) 图像上表现为不同强

度 信号,增强程度不同。T2W 图像通常提示白质内血

管源性水肿,脑膜强化通常不明显,即使有也很轻微

(Cherubini et al., 2006; Talarico and Schatzberg,

2010; Coates and Jeffery, 2014)。MR 影像病变的分

布 ( 位于灰质或白质 ) 与组织病理学结果一致

(Cherubini et al., 2006)。

报道的 NME 犬最常见的 MRI 异常是不对称、多

灶性和位于前脑的病变 ( 更严重的病变位于顶叶和枕

叶 );T2W、FLAIR 高强度信号 ; 通常影响皮质灰质和

皮质下白质,在 T1W 增强后图像上灰质 / 白质界限

丧失,实质病变的对比增强程度不同 (Flegel et al.,

2008; Young et al., 2009; Talarico and Schatzberg,

2010; 图 2)。然而,在一项研究中,分别有 4/18 例和

3/18 例发现小脑和脑干病变 (Young et al., 2009)。脑

膜强化也可出现,伴有肿物效应和不同程度的脑室增

大 (Coates and Jeffery, 2014)。

在 NLE 中,发现了多处不对称的大脑白质和脑干

病变 (von Praun et al., 2006)。这些病变在 T2W 和

FLAIR 上表现为典型的高强度信号,常包括多个囊性

坏死区域。在两项已报道的研究中,实质异常的对比

度增强很少 (Talarico and Schatzberg, 2010; Coates

and Jeffery, 2014)。第三项研究显示未见脑膜强化和

肿物效应,但伴有不同程度的脑室增大 (Coates 和

Jeffery, 2014; 图 3)。

已有报道 57 例犬患有不明病因性脑膜脊髓炎,

包括 3 例经组织病理学证实为 GME 的犬 (Cherubini

et al., 2006; Griffin et al., 2008; Wong et al., 2010;

Cornelis et al., 2017a)。57 例中有 36 例使用不同类型

的影像学检查结果。12 例犬单独进行了(X 线片)脊髓

造影或计算机断层扫描 (CT) 的脊髓造影;11 例犬未

发现异常,1 例犬腹侧硬膜外脊髓受压 (Wong et al.,

2010)。对 25 例犬进行了 MRI 检查,其中 3 例犬未发

现异常,6 例犬出现多灶性边界不清晰的髓内 T2W 高

强度信号,增强程度不一,在 16 例犬的髓内 T2W 高

强度信号和 T1W 等强度信号的异常中,脊髓实质病

变和 / 或覆盖脑膜的不同对比度增强 (Cherubini et

al., 2006; Wong et al., 2010; Cornelis et al., 2017a)。

其他成像方式,包括 NME 的正电子发射断层扫

描 (PET), MUO 的氟脱氧葡萄糖 PET (FDG-PET) 和

单体素质子磁共振波谱 (1H MRS),以及 GME 的经颅

超声检查结果,被研究作为诊断方式 (Eom et al.,

2008; Kang et al., 2010; Carvalho et al., 2012; Carrera et al., 2016)。然而,需要更大样本量的进一步研究

来评估这些成像方式的临床用途。

脑脊液分析

脑脊液细胞增多(pleocytosis),定义为脑脊液

中有核细胞总数的增加(total nucleated cell count,

TNCC;参考范围为<5个白细胞(WBC)/mL),是

假设性MUO诊断标准之一(Granger et al., 2010)。然

而,脑脊液细胞学异常的患病率在不同的文献中差

异很大,可能是由于采用的方法和纳入标准的主要

差异。此外,3-57%的MUO病患的脑脊液细胞学正

常(Menaut et al., 2008; Granger et al., 2010),这与

一项GME和NE犬的研究结果类似,此研究的CSF分

析显示,16%的GME犬和12.5%的NE犬的细胞计数

正常(Granger et al., 2010)。白蛋白-细胞学不匹配

(Albumino-cytological dissociation)可发生在细

胞计数正常和脑脊液蛋白浓度增加的情况下(Tipold,

1995; Granger et al., 2010)。GME组和MUO组以淋

巴细胞为主,分别占42%和71%,NE组以单核细胞

和淋巴细胞为主;各组中<10%的病例中,中性粒细

胞是主要的细胞类型(Granger et al., 2010)。综上所

述,大多数病例出现脑脊液单核细胞数量增多,因

此,>50%单核细胞数量增多已被建议纳入MUO犬

的诊断标准(Smith et al., 2009; Granger et al., 2010;

Lowrie et al., 2013; Coates and Jeffery, 2014)。然

而,MRI异常提示颅内压升高但未进行脑脊液收集

的犬通常被排除在脑脊液研究之外,这可能造成所

研究的病例群体疾病严重程度较轻的倾向(Cornelis

et al. 2016a)。

在 51 例报道的不明原因的脑膜脊髓炎犬中,只

有 22 例 犬 的 脑 脊 液 发 现 (Cherubini et al., 2006;

Griffin et al., 2008; Cornelis et al., 2017a)。虽然所有

的犬都出现了脑脊液细胞增多,但由于其中 21 例犬

的脑脊液中存在炎症,因此无法得出明确的结论

(Cornelis et al., 2017a)。对 19 例犬进行了总蛋白检

测,发 现 17 例 犬 的 总 蛋 白 浓 度 升 高 ( 范 围 为

31-1630 mg/dL;Cherubini et al., 2006; Cornelis et

al., 2017a)。

活组织检查程序

立体定向 CT 引导下的脑活检程序 (Koblik et al.,

1999) 和通过迷你钻孔进行的徒手活检 (Flegel et al.,

2012) 都曾在炎症性中枢神经系统疾病的犬中有描

述过,但这些都不容易在临床上应用。诊断准确度为

82% (n = 17; Flegel et al., 2012) 到 100% (n = 3;

Koblik et al., 1999),但是由于相对较小的样本量,这

些结果应谨慎解释。在手术过程中,没有一例犬死亡。

12-29% 的犬出现并发症,包括短暂鼻出血、神经症

状短暂加重、迟钝渐进性发展至昏迷、药物无法控制

的抽搐发作、四肢轻瘫、半身偏瘫、共济失调和意识性

本 体 感 觉 丧 失 (Koblik et al.,1999; Flegel et al.,

2012)。大多数症状在 3-14 天内得到缓解 (Flegel et

al., 2012)。

治疗

虽然理想的临床试验应该是随机的、安慰剂对照

的、双盲的、前瞻性的研究,但人们普遍认为使用安慰

剂对照治疗组是不道德的,因为患有 MUO 的犬不经

治疗的结果会很差 (Coates et al., 2007; Smith et al.,

2009; Coates and Jeffery, 2014)。历史上使用了不同

的纳入标准,而且由于在一些研究中,免疫介导药物

只在已知传染病检测结果后才开始,导致治疗结果延

迟,治疗反应和结果难以比较 (Adamo et al., 2007;

Coates et al., 2007; Wong et al., 2010)。此外,在诊断

数小时内死亡的犬 ( 无论是否进行免疫抑制治疗 ) 有

时会被排除在登记或进一步分析之外,这必然会导致

生 存 时 间 增 加 (Lowrie et al., 2013; Cornelis et al.,

2016a; Lowrie et al., 2016)。另外,基于临床怀疑 ( 缺

乏全面的诊断检查 ) 进行治疗的犬也不符合大多数研

究的纳入标准,因此可能会低估生存时间。此外,值得

注意的是,麻醉和脑脊液收集可能与副作用有关,这

些副作用可能会影响完全诊断检查结果的情况。

如前所述,MUO 的确切病因和病理生理仍不清

楚,但基本的治疗方式通常认为是免疫抑制治疗。结

果,使用不同纳入标准的几种治疗方案导致了不同的

长 期 生 存 时 间 (Sisson et al. 1989; Gregory et al.,

1998; Munana and Luttgen, 1998; Adamo and

O’ Brien, 2004; Gnirs, 2006; Zarfoss et al., 2006;

Adamo et al., 2007; Coates et al., 2007; de Stefani et

al., 2007; Feliu-Pascual et al., 2007; Uriarte et al.,

2007; Jung et al., 2007; Menaut et al., 2008; Pakozdy et al., 2009; Smith et al., 2009; Granger et al.,

2010; Kang et al., 2010; Wong et al., 2010; Flegel et

al., 2011; Jung et al., 2011; Jung et al., 2013; Lowrie

et al., 2013; Beckmann et al., 2015; Mercier and

Barnes Heller, 2015; Barnoon et al., 2016; Cornelis

et al., 2016a; Lowrie et al., 2016; Cornelis et al.,

2017b)。

总的来说,治疗效果是通过临床反应和神经功能

缺陷的好转来监测的,偶尔也通过反复脑脊液分析和

磁 共 振 成 像 来 判 断 (Coates and Jeffrey, 2014)。

Lowrie et al. (2013) 在一组犬的研究中指出,MR 成像

和脑脊液分析相结合比单独使用一种方法更能预测

复发的发展。然而,由于与麻醉和脑脊液收集相关的

风险,重复这些检查可能很难证明是合理的。

糖皮质激素,如泼尼松龙 prednisolone 仍然是

主要的最初治疗和长期治疗,多数还需要联合其他

免疫抑制药物,如阿糖胞苷 cytosine arabinoside 或

环孢素 ciclosporine 。这些治疗方案的总结见表1。

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

第122页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 120 -

脑脊液分析

脑脊液细胞增多(pleocytosis),定义为脑脊液

中有核细胞总数的增加(total nucleated cell count,

TNCC;参考范围为<5个白细胞(WBC)/mL),是

假设性MUO诊断标准之一(Granger et al., 2010)。然

而,脑脊液细胞学异常的患病率在不同的文献中差

异很大,可能是由于采用的方法和纳入标准的主要

差异。此外,3-57%的MUO病患的脑脊液细胞学正

常(Menaut et al., 2008; Granger et al., 2010),这与

一项GME和NE犬的研究结果类似,此研究的CSF分

析显示,16%的GME犬和12.5%的NE犬的细胞计数

正常(Granger et al., 2010)。白蛋白-细胞学不匹配

(Albumino-cytological dissociation)可发生在细

胞计数正常和脑脊液蛋白浓度增加的情况下(Tipold,

1995; Granger et al., 2010)。GME组和MUO组以淋

巴细胞为主,分别占42%和71%,NE组以单核细胞

和淋巴细胞为主;各组中<10%的病例中,中性粒细

胞是主要的细胞类型(Granger et al., 2010)。综上所

述,大多数病例出现脑脊液单核细胞数量增多,因

此,>50%单核细胞数量增多已被建议纳入MUO犬

的诊断标准(Smith et al., 2009; Granger et al., 2010;

Lowrie et al., 2013; Coates and Jeffery, 2014)。然

而,MRI异常提示颅内压升高但未进行脑脊液收集

的犬通常被排除在脑脊液研究之外,这可能造成所

研究的病例群体疾病严重程度较轻的倾向(Cornelis

et al. 2016a)。

在 51 例报道的不明原因的脑膜脊髓炎犬中,只

有 22 例 犬 的 脑 脊 液 发 现 (Cherubini et al., 2006;

Griffin et al., 2008; Cornelis et al., 2017a)。虽然所有

的犬都出现了脑脊液细胞增多,但由于其中 21 例犬

的脑脊液中存在炎症,因此无法得出明确的结论

(Cornelis et al., 2017a)。对 19 例犬进行了总蛋白检

测,发 现 17 例 犬 的 总 蛋 白 浓 度 升 高 ( 范 围 为

31-1630 mg/dL;Cherubini et al., 2006; Cornelis et

al., 2017a)。

活组织检查程序

立体定向 CT 引导下的脑活检程序 (Koblik et al.,

1999) 和通过迷你钻孔进行的徒手活检 (Flegel et al.,

2012) 都曾在炎症性中枢神经系统疾病的犬中有描

述过,但这些都不容易在临床上应用。诊断准确度为

82% (n = 17; Flegel et al., 2012) 到 100% (n = 3;

Koblik et al., 1999),但是由于相对较小的样本量,这

些结果应谨慎解释。在手术过程中,没有一例犬死亡。

12-29% 的犬出现并发症,包括短暂鼻出血、神经症

状短暂加重、迟钝渐进性发展至昏迷、药物无法控制

的抽搐发作、四肢轻瘫、半身偏瘫、共济失调和意识性

本 体 感 觉 丧 失 (Koblik et al.,1999; Flegel et al.,

2012)。大多数症状在 3-14 天内得到缓解 (Flegel et

al., 2012)。

治疗

虽然理想的临床试验应该是随机的、安慰剂对照

的、双盲的、前瞻性的研究,但人们普遍认为使用安慰

剂对照治疗组是不道德的,因为患有 MUO 的犬不经

治疗的结果会很差 (Coates et al., 2007; Smith et al.,

2009; Coates and Jeffery, 2014)。历史上使用了不同

的纳入标准,而且由于在一些研究中,免疫介导药物

只在已知传染病检测结果后才开始,导致治疗结果延

迟,治疗反应和结果难以比较 (Adamo et al., 2007;

Coates et al., 2007; Wong et al., 2010)。此外,在诊断

数小时内死亡的犬 ( 无论是否进行免疫抑制治疗 ) 有

时会被排除在登记或进一步分析之外,这必然会导致

生 存 时 间 增 加 (Lowrie et al., 2013; Cornelis et al.,

2016a; Lowrie et al., 2016)。另外,基于临床怀疑 ( 缺

乏全面的诊断检查 ) 进行治疗的犬也不符合大多数研

究的纳入标准,因此可能会低估生存时间。此外,值得

注意的是,麻醉和脑脊液收集可能与副作用有关,这

些副作用可能会影响完全诊断检查结果的情况。

如前所述,MUO 的确切病因和病理生理仍不清

楚,但基本的治疗方式通常认为是免疫抑制治疗。结

果,使用不同纳入标准的几种治疗方案导致了不同的

长 期 生 存 时 间 (Sisson et al. 1989; Gregory et al.,

1998; Munana and Luttgen, 1998; Adamo and

O’ Brien, 2004; Gnirs, 2006; Zarfoss et al., 2006;

Adamo et al., 2007; Coates et al., 2007; de Stefani et

al., 2007; Feliu-Pascual et al., 2007; Uriarte et al.,

2007; Jung et al., 2007; Menaut et al., 2008; Pakozdy et al., 2009; Smith et al., 2009; Granger et al.,

2010; Kang et al., 2010; Wong et al., 2010; Flegel et

al., 2011; Jung et al., 2011; Jung et al., 2013; Lowrie

et al., 2013; Beckmann et al., 2015; Mercier and

Barnes Heller, 2015; Barnoon et al., 2016; Cornelis

et al., 2016a; Lowrie et al., 2016; Cornelis et al.,

2017b)。

总的来说,治疗效果是通过临床反应和神经功能

缺陷的好转来监测的,偶尔也通过反复脑脊液分析和

磁 共 振 成 像 来 判 断 (Coates and Jeffrey, 2014)。

Lowrie et al. (2013) 在一组犬的研究中指出,MR 成像

和脑脊液分析相结合比单独使用一种方法更能预测

复发的发展。然而,由于与麻醉和脑脊液收集相关的

风险,重复这些检查可能很难证明是合理的。

糖皮质激素,如泼尼松龙 prednisolone 仍然是

主要的最初治疗和长期治疗,多数还需要联合其他

免疫抑制药物,如阿糖胞苷 cytosine arabinoside 或

环孢素 ciclosporine 。这些治疗方案的总结见表1。

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

第123页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 121 -

其他免疫抑制剂

其他免疫抑制剂与泼尼松龙联合治疗MUO已有

报道,包括硫唑嘌呤 azathioprine (Wong et al.,

2010)、丙卡巴嗪 procarbazine (Cuddon, 2002;

Coates et al., 2007),洛莫司汀 lomustine (Uriarte et

al., 2007; Flegel et al., 2011)、长春新碱 vincristine 和

环磷酰胺 cyclophosphamide (Smith et al., 2009)、来

氟米特 leflunomide (Gregory et al., 1998)和吗替麦考

酚酯 mycophenolate mofetil (Feliu-Pascual et al.,

2007; Barnoon et al., 2016)。

表1:对不明原因脑膜脊髓炎(MUO)犬的最常用治疗方案的总结

在这些研究中描述了以下副作用: 使用丙卡巴嗪

可出现骨髓抑制(19%)和出血性肠炎(15%)(Coates et

al., 2007);洛莫司汀引起白细胞减少症、严重血小板

减少症和出血性胃肠炎(Flegel et al., 2011);长春新碱

和环磷酰胺可能导致骨髓抑制、出血性膀胱炎和子

宫积脓(Smith et al., 2009);在使用吗替麦考酚酯治疗

的前2周内出现出血性腹泻(Feliu-Pascual et al., 2007;

Barnoon et al., 2016)。该作者不能接受长春新碱和

环磷酰胺联合使用的副作用,并将该方案排除在进

一步研究之外(Smith et al., 2009)。用硫唑嘌呤(n=

40)治疗时,主要不良事件不常见,但包括皮肤变薄

或被毛不佳(13/40)、尿路感染(3/40)、呕吐(3/40)、

角膜溃疡(2/40)、糖尿病(2/40)、肾功能衰竭、角膜

结膜炎、前十字韧带撕裂、肝肿物、乳腺腺瘤、淋

巴瘤、蠕形螨管理和单一关节的化脓/败血性关节

炎。然而,许多不良反应,包括体重增加、被毛不

佳、高甘油三酯血症、血小板增多症和肝酶活性升

高,可能与同时给药糖皮质激素有关(Wong et al.,

2010)。

在一些研究中,中位生存时间(MSTs)如下:丙卡

巴嗪425天(Coates et al., 2007),洛莫司汀150-740

天(Uriarte et al., 2007; Flegel et al., 2011),长春新

碱和环磷酰胺198天(Smith et al., 2009),吗替麦考

酚酯250天(Barnoon et al., 2016),硫唑嘌呤1834天

(Wong et al., 2010)。

放射疗法

包括17例犬在内的三项研究检查了放射治疗的

额外效果(Sisson et al., 1989; Munana and Luttgen,

1998; Beckmann et al., 2015)。其结果是MSTs为

404-476天,没有任何早期或晚期放疗反应(Munana

and Luttgen, 1998; Beckmann et al., 2015)。

预后因素

由 于 MUO 通 常 被 认 为 是 一 种 致 命 性 疾 病

(Munana and Luttgen, 1998),已有多项研究试图确

定被诊断为 MUO 犬的预后因素。不幸的是,由于大多

数研究只包括数量相对较少的犬只,它们接受了不同

的治疗方案,因此报告的结果相互矛盾,使得大多数

研究结果难以应用于临床。

在 52 例患有 MUO 犬中,较年轻的诊断年龄与

生存率的提高显著相关 (Oliphant et al., 2017)。在 42

例患有 GME 的犬中,Munana 和 Luttgen(1998) 报告

了局灶性 (21 只 ) 相对于多灶性 (21 只 ) 神经症状的

STs 明显更长。此外,与中枢神经系统其他区域有局灶

性前脑症状的犬相比,有局灶性前脑信号的犬的 STs

明显更长。有局灶性前脑症状的犬接受了放射治疗,

与没有接受放射治疗的犬相比,接收放疗的犬 ST 明

显更长 (Munana and Luttgen, 1998)。然而,有局灶性

神经症状的犬的存活率提高的发现在最近的研究中

没有得到重复,包括 187 例患有 MUO 的犬 (Coates

et al., 2007; Lowrie et al., 2013; Cornelis et al.,

2016a)。特别表现为抽搐发作或精神状态改变的犬的

STs 明显较短 (Bateman and Parent, 1999; Coates et

al., 2007; Granger et al., 2010),诊断后第一周内死亡

的风险明显更高 (Cornelis et al., 2016a)。25 例 7 天

内出现出现临床症状的犬的 MST 明显长于出现临床

症状后 7 天以上出现的犬,这表明早期诊断和治疗可

能会影响生存时间 (Barnoon et al., 2016)。

一项研究发现,较低的脑脊液 TNCC 与 52 例

MUO 犬 的 生 存 率 改 善 显 著 相 关 (Oliphant et al.,

2017),而其他研究发现,在 148 例 MUO 犬中,脑脊

液 TNCC 和蛋白浓度均对生存时间没有影响 (Coates

et al., 2007; Cornelis et al., 2016a)。Lowrie 等 人

(2013) 的研究未能证明正常的脑脊液分析与预后改

善之间的关联,但在 39 例患有 MUO 的犬中发现了

异常的脑脊液分析与复发或不良预后之间的关联

(Lowrie et al., 2013)。Mercier 和 Barnes Heller (2015)

的研究,16 例 MUO 犬在诊断后一个月重复 CSF 分

析 MUO,结果表明,连续 CSF 分析可能是一个监测

MUO 犬糖皮质激素单药治疗成功或失败的有效工

具。需要注意的是,脑脊液分析总是带有并发症的风

险的,包括神经功能恶化和 / 或死亡,临床医生应该权

衡任何好处与潜在风险。此外,重复脑脊液分析需要

在全身麻醉下进行的,费用高昂。

MR 成像上的各种研究已经评估了其可能的预后

价值,但迄今为止在 52 例 MUO 犬的大脑中线移位

(Oliphant et al., 2017),在 T1W 图像上的增强,和 18

例 NME 巴哥犬的病变 (Young et al., 2009),和局灶

性,多灶状或弥漫性异常的存在,包括 116 例 MUO

犬解剖定位、肿物效应、脑疝、脑实质和脑膜造影增强

(Cornelis et al., 2016a) 均与生存率无关。然而,肿物

效应、可识别的脑沟缺失和枕骨大孔疝均与 MUO 犬

的死亡风险增加显著相关,但这些发现与预后的相关

性较差,且不能预测长期结局 (Lowrie et al., 2013;

Lowrie et al., 2016)。39 例 MUO 犬在诊断 3 个月后

MRI 异常的完全好转与良好的预后相关 (Lowrie et

al., 2013)。

在一项研究中,39 例犬中有 65% 在诊断后 210

天内复发 (Lowrie et al., 2013)。此研究发现 3 个月时

脑脊液分析异常与复发风险较高相关,但 MRI 和脑脊

液分析联合预测复发的敏感性高于单独其中一种方

式。MRI 异常解完全好转前停止治疗往往会导致复发

(Lowrie et al.,2013)。

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

Drug

药物

Number of dogs included

纳入犬病例数

Dose

剂量

References

参考文献

单纯泼尼松龙 116 0.5 –30 mg/kg/day

0.5 –30 mg/kg/ 天

Coates et al., 2007; Pakozdy et al.,

2009; Granger et al., 2010; Flegel et al.,

2011; Mercier and Barnes Heller, 2015;

Cornelis et al., 2017b

阿糖胞苷 158

CRI: 100 – 300 mg/m

缓慢输注 8–24 小时

SC:48 小时内 4次皮下注射 ,

50 mg/m

Cuddon, 2002; Zarfoss et al., 2006; de

Stefani et al., 2007; Menaut et al., 2008;

Smith et al., 2009; Lowrie et al., 2013;

Lowrie et al., 2016

环孢素 26 3–15 mg/kg PO

每 12 h一次

Adamo and O’Brien, 2004; Gnirs, 2006;

Adamo et al., 2007; Jung et al., 2007;

Pakozdy et al., 2009; Kang et al., 2010;

Jung et al., 2013

Drug

药物

Side effects

副作用

Median survival

中位存活时间

References

参考文献

单纯泼尼松龙

多尿 、多饮 、气喘 、肌肉

无力 、皮肤病变 、易感染

倾向 、肌肉萎缩 、胰岛素

抵抗 、高血糖 、空泡性肝

病和血液高凝状态

28 – 602 天

Coates et al., 2007; Pakozdy et al.,

2009; Granger et al., 2010; Flegel et al.,

2011; Mercier and Barnes Heller, 2015;

Cornelis et al., 2017b

阿糖胞苷

骨髓抑制 ,胃肠道不适 ,

治疗后短暂嗜睡 ,吞咽困

难或肢体震颤 ; 轻度被毛和

皮肤变化 (脱毛增多 ,轻度

局灶性皮炎 ; 一过性至间歇

性后肢无力 ; 浸润性的肺部

疾病 ; 前葡萄膜炎 ; 注射部

位皮肤钙质沉着和深部脓

皮病

26 – 1063 days

26 – 1063 天

Cuddon, 2002; Zarfoss et al., 2006; de

Stefani et al., 2007; Menaut et al., 2008;

Smith et al., 2009; Lowrie et al., 2013;

Lowrie et al., 2016

环孢素

多毛症 ; 一过性淋巴细胞减

少症 ; 呕吐 ; 严重的胃肠道

不良反应 ,伴可能危及生

命的贫血

236 – 930 天

Adamo and O’Brien, 2004; Gnirs, 2006;

Adamo et al., 2007; Jung et al., 2007;

Pakozdy et al., 2009; Kang et al., 2010;

Jung et al., 2013

2

2

第124页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 122 -

其他免疫抑制剂

其他免疫抑制剂与泼尼松龙联合治疗MUO已有

报道,包括硫唑嘌呤 azathioprine (Wong et al.,

2010)、丙卡巴嗪 procarbazine (Cuddon, 2002;

Coates et al., 2007),洛莫司汀 lomustine (Uriarte et

al., 2007; Flegel et al., 2011)、长春新碱 vincristine 和

环磷酰胺 cyclophosphamide (Smith et al., 2009)、来

氟米特 leflunomide (Gregory et al., 1998)和吗替麦考

酚酯 mycophenolate mofetil (Feliu-Pascual et al.,

2007; Barnoon et al., 2016)。

在这些研究中描述了以下副作用: 使用丙卡巴嗪

可出现骨髓抑制(19%)和出血性肠炎(15%)(Coates et

al., 2007);洛莫司汀引起白细胞减少症、严重血小板

减少症和出血性胃肠炎(Flegel et al., 2011);长春新碱

和环磷酰胺可能导致骨髓抑制、出血性膀胱炎和子

宫积脓(Smith et al., 2009);在使用吗替麦考酚酯治疗

的前2周内出现出血性腹泻(Feliu-Pascual et al., 2007;

Barnoon et al., 2016)。该作者不能接受长春新碱和

环磷酰胺联合使用的副作用,并将该方案排除在进

一步研究之外(Smith et al., 2009)。用硫唑嘌呤(n=

40)治疗时,主要不良事件不常见,但包括皮肤变薄

或被毛不佳(13/40)、尿路感染(3/40)、呕吐(3/40)、

角膜溃疡(2/40)、糖尿病(2/40)、肾功能衰竭、角膜

结膜炎、前十字韧带撕裂、肝肿物、乳腺腺瘤、淋

巴瘤、蠕形螨管理和单一关节的化脓/败血性关节

炎。然而,许多不良反应,包括体重增加、被毛不

佳、高甘油三酯血症、血小板增多症和肝酶活性升

高,可能与同时给药糖皮质激素有关(Wong et al.,

2010)。

在一些研究中,中位生存时间(MSTs)如下:丙卡

巴嗪425天(Coates et al., 2007),洛莫司汀150-740

天(Uriarte et al., 2007; Flegel et al., 2011),长春新

碱和环磷酰胺198天(Smith et al., 2009),吗替麦考

酚酯250天(Barnoon et al., 2016),硫唑嘌呤1834天

(Wong et al., 2010)。

放射疗法

包括17例犬在内的三项研究检查了放射治疗的

额外效果(Sisson et al., 1989; Munana and Luttgen,

1998; Beckmann et al., 2015)。其结果是MSTs为

404-476天,没有任何早期或晚期放疗反应(Munana

and Luttgen, 1998; Beckmann et al., 2015)。

预后因素

由 于 MUO 通 常 被 认 为 是 一 种 致 命 性 疾 病

(Munana and Luttgen, 1998),已有多项研究试图确

定被诊断为 MUO 犬的预后因素。不幸的是,由于大多

数研究只包括数量相对较少的犬只,它们接受了不同

的治疗方案,因此报告的结果相互矛盾,使得大多数

研究结果难以应用于临床。

在 52 例患有 MUO 犬中,较年轻的诊断年龄与

生存率的提高显著相关 (Oliphant et al., 2017)。在 42

例患有 GME 的犬中,Munana 和 Luttgen(1998) 报告

了局灶性 (21 只 ) 相对于多灶性 (21 只 ) 神经症状的

STs 明显更长。此外,与中枢神经系统其他区域有局灶

性前脑症状的犬相比,有局灶性前脑信号的犬的 STs

明显更长。有局灶性前脑症状的犬接受了放射治疗,

与没有接受放射治疗的犬相比,接收放疗的犬 ST 明

显更长 (Munana and Luttgen, 1998)。然而,有局灶性

神经症状的犬的存活率提高的发现在最近的研究中

没有得到重复,包括 187 例患有 MUO 的犬 (Coates

et al., 2007; Lowrie et al., 2013; Cornelis et al.,

2016a)。特别表现为抽搐发作或精神状态改变的犬的

STs 明显较短 (Bateman and Parent, 1999; Coates et

al., 2007; Granger et al., 2010),诊断后第一周内死亡

的风险明显更高 (Cornelis et al., 2016a)。25 例 7 天

内出现出现临床症状的犬的 MST 明显长于出现临床

症状后 7 天以上出现的犬,这表明早期诊断和治疗可

能会影响生存时间 (Barnoon et al., 2016)。

一项研究发现,较低的脑脊液 TNCC 与 52 例

MUO 犬 的 生 存 率 改 善 显 著 相 关 (Oliphant et al.,

2017),而其他研究发现,在 148 例 MUO 犬中,脑脊

液 TNCC 和蛋白浓度均对生存时间没有影响 (Coates

et al., 2007; Cornelis et al., 2016a)。Lowrie 等 人

(2013) 的研究未能证明正常的脑脊液分析与预后改

善之间的关联,但在 39 例患有 MUO 的犬中发现了

异常的脑脊液分析与复发或不良预后之间的关联

(Lowrie et al., 2013)。Mercier 和 Barnes Heller (2015)

的研究,16 例 MUO 犬在诊断后一个月重复 CSF 分

析 MUO,结果表明,连续 CSF 分析可能是一个监测

MUO 犬糖皮质激素单药治疗成功或失败的有效工

具。需要注意的是,脑脊液分析总是带有并发症的风

险的,包括神经功能恶化和 / 或死亡,临床医生应该权

衡任何好处与潜在风险。此外,重复脑脊液分析需要

在全身麻醉下进行的,费用高昂。

MR 成像上的各种研究已经评估了其可能的预后

价值,但迄今为止在 52 例 MUO 犬的大脑中线移位

(Oliphant et al., 2017),在 T1W 图像上的增强,和 18

例 NME 巴哥犬的病变 (Young et al., 2009),和局灶

性,多灶状或弥漫性异常的存在,包括 116 例 MUO

犬解剖定位、肿物效应、脑疝、脑实质和脑膜造影增强

(Cornelis et al., 2016a) 均与生存率无关。然而,肿物

效应、可识别的脑沟缺失和枕骨大孔疝均与 MUO 犬

的死亡风险增加显著相关,但这些发现与预后的相关

性较差,且不能预测长期结局 (Lowrie et al., 2013;

Lowrie et al., 2016)。39 例 MUO 犬在诊断 3 个月后

MRI 异常的完全好转与良好的预后相关 (Lowrie et

al., 2013)。

在一项研究中,39 例犬中有 65% 在诊断后 210

天内复发 (Lowrie et al., 2013)。此研究发现 3 个月时

脑脊液分析异常与复发风险较高相关,但 MRI 和脑脊

液分析联合预测复发的敏感性高于单独其中一种方

式。MRI 异常解完全好转前停止治疗往往会导致复发

(Lowrie et al.,2013)。

参考文献:

1. Simpson S, Syring R, Otto C. Severe blunt trauma in

dogs: 235 cases (1997-2003). J Vet Emerg Crit Care (San Antonio) 2009;19(6):588–602.

2. Marioni-Henry K, Vite CH, Newton AL, et al. Prevalence

of diseases of the spinalcord of cats. J Vet Intern Med

2004;18(6):851–8.

3. Fluehmann G, Doherr MG, Jaggy A. Canine neurological

diseases in a referralhospital population between 1989 and

2000 in Switzerland. J Small Anim Pract2006;47(10):582–7.

4. Sande A, West C. Traumatic brain injury: a review of

pathophysiology and management.J Vet Emerg Crit Care (San

Antonio) 2010;20(2):177–90.

5. Dewey C. Emergency management of the head trauma

patient. Vet Clin NorthAm Small Anim Pract 2000;30�207–25.

6. Hopkins A. Head trauma. Vet Clin North Am Small Anim

Pract 1996;26�875–91.

7. Dewey C, Fletcher D. Head trauma management. In:

Dewey C, editor. A practicalguide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell;2008. p. 221–35.

8. Aries M, Czrosynka M, Budohoski K, et al. Continuous

determination of optimalcerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012;40(8):2456–63.

9. Ling G, Marshall S, Moore D. Diagnosis and management of traumatic braininjury. Continuum 2010;16(6):27–40.

10. Kim J, Gean A. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics

2011;8(1):39–53.

11. Tsang K, Whitfield P. Traumatic brain injury: review of

current management strategies.Br J Oral Maxillofac Surg

2012;50�298–308.

12. Proulx J, Dhupa N. Severe brain injury: part I: pathophysiology. CompendContin Educ Vet 1998;20�897–905.

13. Fletcher DJ, Dewey CW. Spinal trauma management.

In: Dewey CW, editor.A practical guide to canine and feline neurology. 2nd edition. Ames (IA): Wiley-Blackwell; 2008. p.

405–17.

14. Johnson K, Vite C. Spinal cord injury. In: Silverstein D,

Hopper K, editors. Smallanimal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders;2009. p. 419–23.

15. Park EH, White GA, Tieber LM. Mechanisms of injury

and emergency care ofacute spinal cord injury in dogs and cats.

J Vet Emerg Crit Care (San Antonio)2012;22(2):160–78.

16. Olby N. The pathogenesis and treatment of acute

spinal cord injuries in dogs.Vet Clin North Am Small Anim Pract

2010;40(5):791–807.

17. Fletcher D, Syring R. Traumatic brain injury. In: Silverstein D, Hopper K, editors.Small animal critical care medicine.

1st edition. St Louis (MO): Elsevier Saunders;2009. p. 658–62.

18. Leonard SE, Kirby R. The role of glutamate, calcium

and magnesium in secondarybrain injury. J Vet Emerg Crit Care

2002;12(1):17–32.

19. McMichael M, Moore R. Ischemia and reperfusion

injury pathophysiology, part I.J Vet Emerg Crit Care (San Antonio) 2004;14(4):231–41.

20. Oyinbo C. Secondary injury mechanisms in traumatic

spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281–99.

21. Tator C, Fehlings M. Review of the secondary injury

theory of acute spinal cordtrauma with emphasis on vascular

mechanisms. J Neurosurg 1991;75(1):15–26.

22. Dooney N, Dagal A. Anesthetic considerations in acute

spinal cord trauma. Int JCrit Illn Inj Sci 2011;1(1):36–43.

23. Armitage-Chan E, Wetmore L, Chan D. Anesthetic

management of the headtrauma patient. J Vet Emerg Crit Care

(San Antonio) 2007;17(1):5–14.

24. Shores A. Craniocerebral trauma. In: Kirk R, editor. Current veterinary therapy X.X. Philadelphia: WB Saunders; 1983. p.

847–54.

25. Platt S, Radaelli S, McDonnell J. The prognostic value of

the Modified GlasgowComa Scale in head trauma in gods. J Vet

Intern Med 2001;15(6):581–4.

26. Levine GJ, Levine JM, Budke CM, et al. Description and

repeatability of anewly developed spinal cord injury scale for

dogs. Prev Vet Med 2009;89(1–2):121–7.

27. Olby N, De Risio L, Munana K, et al. Development of a

functional scoring systemin dogs with acute spinal cord injuries.

Am J Vet Res 2001;62(10):1624–8.

28. Smith P, Jeffery N. Spinal shock—comparative aspects

and clinical relevance.J Vet Intern Med 2005;19�788–93.

29. Boysen S, Rozanski E, Tidwell A, et al. Evaluation of a

focused assessment with sonography for trauma protocol to

detect free abdominal fluid in dogs involved in motor vehicle

accidents. J Am Vet Med Assoc 2004;225(8):1198–204.

30. Lisciandro GR. Abdominal and thoracic focused assessment with sonographyfor trauma, triage, and monitoring in small

animals. J Vet Emerg Crit Care(San Antonio) 2011;21(2):104–22.

31. Kinns J, Mai W, Seiler G, et al. Radiographic sensitivity

and negative predictive value for acute canine spinal trauma. Vet

Radiol Ultrasound 2006;47(6):563–70.

32. Vitale C, Coates J. Acute spinal injury. Compendium

Standards of Care: Emergencyand Critical Care Medicine

2007;9(7):1–11.

33. Lamb CR, Nicholls A, Targett M, et al. Accuracy of

survey radiographic diagnosis of intervertebral disc protrusion in

dogs. Vet Radiol Ultrasound 2002;43(3):222–8.

34. Brisson BA. Intervertebral disc disease in dogs. Vet Clin

North Am Small Anim Pract 2010;40(5):829–58.

35. Israel SK, Levine JM, Kerwin SC, et al. The relative sensitivity of computed tomography and myelography for identification of thoracolumbar intervertebral disk herniations in dogs. Vet

Radiol Ultrasound 2009;50(3):247–52.

36. Olby N, Dyce J, Houlton J. Correlation of plain radiographic and lumbar myelographic findings with surgical findings

in thoracolumbar disc disease. J SmallAnim Pract

1994;35(7):345–50.

37. Griffin J, Levine J, Kerwin S. Canine thoracolumbar

intervertebral disk disease:pathophysiology, neurologic examination, and emergency medical therapy.Compend Contin Educ

Vet 2009;31(3):E1–13.

38. Lewis D, Hosgood G. Complications associated with

the use of iohexol for myelographyof the cervical vertebral

column in dogs: 66 cases (1988-1990). J AmVet Med Assoc

1992;200(9):1381–4.

39. Barone G, Ziemer L, Shofer F, et al. Risk factors associated with the developmentof seizures after use of iohexol for

myelography in dogs: 182 cases(1998). J Am Vet Med Assoc

2002;220(10):1499–502.

40. Johnson P, Beltran E, Dennis R, et al. Magnetic resonance imaging characteristics of suspected vertebral instability

associated with fracture or subluxation in eleven dogs. Vet

Radiol Ultrasound 2012;53(5):552–9.

41. Rozanski EA, Rondeau MP. Respiratory pharmacotherapy in emergency and critical care medicine. Vet Clin North Am

Small Anim Pract 2002;32(5):1073–86.

42. Mazzaferro E. Oxygen therapy. In: Silverstein D, Hopper

K, editors. Small animal critical caremedicine. 1stedition. StLouis(MO): Elsevier Saunders; 2009.p. 78–81.

43. Hopper K. Basic mechanical ventilation. In: Silverstein

D, Hopper K, editors. Small animal critical care medicine. 1st

edition. St Louis (MO): Elsevier Saunders; 2009. p. 900–4.

44. Zhuang J, Shackford S, Schmoker J, et al. Colloid infusion after brain injury: an effect on intracranial pressure, cerebral

blood flow, and oxygen delivery. Crit Care Med

1995;23(1):140–8.

45. Wade C, Grady J, Kramer G, et al. Individual patient

cohort analysis of the efficacy of hypertonic saline/dextran in

patients with traumatic brain injury and hypotension. J Trauma

1997;42�561–5.

46. Vassar M, Perry C, Gannaway W, et al. Analysis of

potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 1990;124: 1309–15.

47. Vassar M, Perry C, Gannaway W, et al. 7.5% sodium

chloride/dextran for resuscitation of trauma patients undergoing

helicopter transport. Arch Surg 1991;126: 1065–72.

48. Vassar M, Perry C, Holcroft J. Prehospital resuscitation

of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl

with added dextran: a controlled trial. J Trauma 1993;34�622–32.

49. Vassar M, Fisher R, O’ Brien P, et al. A multicenter trial

for resuscitation of injured patients with 7.5% sodium chloride.

Arch Surg 1993;128�1003–11.

50. Cooper J, Myles P, McDermott F, et al. Prehospital

hypertonic saline resuscitation of patients with hypotension and

severe traumatic brain injury. JAMA 2004;291�1350–7.

51. Roberts D, Hall R, Kramer A. Sedation for critically ill

adults with severe traumatic brain injury: a systematic review of

randomized controlled trials. CritCare Med 2012;39(12):2743–51.

52. Sperry R, Bailey P, Reichman M, et al. Fentanyl and

sulfentanil increase intracranial pressure in head trauma patients.

Anesthesiology 1992;77�416–20.

53. Lauer K, Connolly L, Schmeling W. Opioid sedation

does not alter intracranial pressure in head injured patients. Can

J Anaesth 1997;44�929–33.

54. Albanese J, Viviand X, Potie F, et al. Sulfentanil, fentanyl,

and alfentanil in head trauma patients: a study on cerebral

hemodynamics. Crit Care Med 1999;27�407–11.

55. de Nadal M, Munar F, Poca M, et al. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe

head injury: absence of correlation to cerebral autoregulation.

Anesthesiology 2000;92�11–9.

56. Hansen B. Acute pain management. Vet Clin North Am

Small Anim Pract 2000;30(4):899–916.

57. Pascoe P. Opioid analgesics. Vet Clin North Am Small

Anim Pract 2000;30(4):757–69.

58. Keegan R, Green S, Bagley R, et al. Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res

1996;56(2):193–8.

59. Treggiari M, Schultz N, Yanez N, et al. Role of intracranial pressure values and patterns in predicting outcome of traumatic brain injury: a systematic review. Neurocrit Care

2007;6�104–12.

60. Weed L, McKibbon P. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various

concentrations. Am J Phys 1919;48�512–30.

61. Ropper A. Hyperosmolar therapy for raised intracranial

pressure. N Engl J Med 2012;367(8):746–52.

62. Brain Trauma Foundation, American Association of

Neurological Surgeons,Congress of Neurological Surgeons.

Guidelines for the management of severetraumatic brain injury. J

Neurotrauma 2007;24(1):S1–106.

63. Fink M. Osmotherapy for intracranial hypertension:

mannitol versus hypertonic saline. Continuum

2012;18(3):640–54.

64. Kaufmann A, Cardoso E. Aggravation of vasogenic

cerebral edema by multipledose mannitol. J Neurosurg

1992;77(4):584–9.

65. McManus M, Soriano S. Rebound swelling of astroglial

cells exposed to hypertonic mannitol. Anesthesiology

1998;88(6):1586–91.

66. Oddo M, Levine J, Frangos S, et al. Effect of mannitol

and hypertonic salineon cerebral oxygenation in patients with

severe traumatic brain injury and refractoryintracranial hypertension. J Neurol Neurosurg Psychiatr 2009;80(8):916–20.

67. Aiyagari V, Deibert E, Diringer M. Hypernatremia in the

neurologic intensive careunit: how high is too high? J Crit Care

2006;21(2):163–72.

68. Battison C, Andrews P, Graham C, et al. Randomized,

controlled trial on theeffect of a 20% mannitol solution and a

7.5% saline/6% dextran solution onincreased intracranial pressure after brain injury. Crit Care Med 2005;33(1):196–202.

69. Francony C, Fauvage B, Falcon D, et al. Equimolar

doses of mannitol and hypertonicsaline in the treatment of intracranial pressure. Crit Care Med 2008;36(3):795–800.

70. Zeng H, Wang Q, Deng Y, et al. A comparative study on

the efficacy of 10%hypertonic saline and equal volume of 20%

mannitol in the treatment of experimentallyinduced cerebral

edema in adult rats. BMC Neurosci 2010;11�153.

71. da Silva J, de Lima F, Valenca M, et al. Hypertonic saline

more efficacious thanmannitol in lethal intracranial hypertension

model. Neurol Res 2010;32(2):139–43.

72. Todd M, Cutkomp J, Brian J. Influence of mannitol and

furosemide, alone and incombination, on brain water content

after fluid percussion injury. Anesthesiology2006;105�1176–80.

73. Edwards P, Arango M, Balica L, et al. Final results of

MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroids in adults with headinjury- outcomes at 6

months. Lancet 2005;365(9475):1957–9.

74. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10,008 adults

with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 2004;364�9442.

75. Schierhout G, Roberts I. Withdrawn: antiepileptic drugs

for preventing seizures following acute traumatic brain injury.

Cochrane Database Syst Rev 2012;(6):CD000173.

76. Musulin S, Mariani C, Papich M. Diazepam pharmacokinetics after nasal drop and atomized nasal administration in

dogs. J Vet Pharmacol Ther 2011;34(1): 17–24.

77. Kassell N, Hitchon P, Gerk M, et al. Alterations in cerebral blood flow,oxygen metabolism, and electrical activity produced by high-dose thiopental.Neurosurgery 1980;7�598–603.

78. Hayes G. Severe seizures associated with traumatic

brain injury managed bycontrolled hypothermia, pharmacologic

coma, and mechanical ventilation in a dog. J Vet Emerg Crit Care

(San Antonio) 2009;19(6):629–34.

79. Giacino J, Whyte J, Bagiella E, et al. Placebo-controlled

trial of amantadine for severe traumatic brain injury. N Engl J

Med 2012;366�819–26.

80. Hall E. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 1992;76(1):13–22.

81. Parker A, Smith C. Functional recovery from spinal cord

trauma following dexamethasone and chlorpromazine therapy in

dogs. Res Vet Sci 1976;21(2):246–7.

82. Levine J, Levine G, Boozer L, et al. Adverse effects and

outcome associatedwith dexamethasone administration in dogs

with acute thoracolumbar intervertebral disk herniation: 161

cases (2000-2006). J Am Vet Med Assoc 2008;232(3):411–7.

83. Bracken M, Shepard M, Collins W. A randomized, controlled trial of methylprednisolone or naloxone in the treatment

of acute spinal-cord injury. Results of the second national acute

spinal cord injury study. N Engl J Med 1990;322(20):1405–11.

84. Bracken M, Shepard M, Hellenbrand K. Methylprednisolone and neurologicalfunction 1 year after spinal cord injury.

Results of the National Acute Spinal Cord Injury Study. J Neurosurg 1985;63(5):704–13.

85. Bracken M, Shepard M, Holford T. Administration of

methylprednisolone for 24 or

48 hours or tirilazad mesylate for 48 hours in the treatment

of acute spinal cord injury. Results of the Third National Acute

Spinal Cord Injury Randomized Controlled Trial. National Acute

Spinal Cord Injury.JAMA 1997;277(20):1597–604.

86. Nesathurai S. Steroids and spinal cord injury: revisiting

the NASCIS 2 and NASCIS 3 trials. J Trauma Acute Care Surg

1998;45(6):1088–93.

87. Rabinowitz R, Eck J, Harper C. Urgent surgical decompression compared to methylprednisolone for the treatment of

acute spinal cord injury. Spine 2008;33(21):2260–8.

88. Coates J, Sorjonen D, Simpson S, et al. Clinicopathologic effects of a 21-aminosteroid compound (U74389G) and high

dose methylprednisolone onspinal cord function after simulated

spinal cord trauma. Vet Surg 1995;24�128–39.

89. Baltzer W, McMichael MA, Hosgood G. Randomized,

blinded, placebocontrolledclinical trial of N-acetylcysteine in

dogs with spinal cord trauma from acute intervertebral disc

disease. Spine 2008;33(13):1397–402.

90. Bains M, Hall E. Antioxidant therapies in traumatic brain

injury and spinal cord injury. Biochim Biophys Acta

2012;1822(5):675–84.

91. Hall E, Wolf D. A pharmacological analysis of the

pathophysiologicalmechanisms of posttraumatic spinal cord

ischemia. J Neurosurg 1986;64(6):951–61.

92. Ates O, Cayli S, Gurses I. Comparative neuroprotective

effect of sodium channel blockers after experimental spinal cord

injury. J Clin Neurosci 2007;14(7):658–65.

93. Kaptanoglu E, Solaroglu I, Surucu H. Blockade of

sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta

Neurochir 2005;147(4):405–12.

94. Hains B, Saab C, Lo A. Sodium channel blockade with

phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional recovery after contusion SCI. Exp

Neurol 2004;188(2):365–77.

95. Schwartz G, Fehlings M. Secondary injury mechanisms

of spinal cord trauma:novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 2002;137�177–90.

96. Park E, Velumian A, Fehlings M. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with

an emphasis on the implications for white matter degeneration. J

Neurotrauma 2004;21�754–74.

97. Walters M, Kaste M, Lees K, et al. The AMPA antagonist

ZK 200775 in patients with acute ischaemic stroke: a double-blind, multi-centre, placebo-controlled safety and tolerability study. Cerebrovasc Dis 2005;20�304–9.

98. Chan P. White matter injury in spinal cord ischemia:

protection by AMPA/kainite glutamate receptor antagonism—Editoral comment. Stroke 2000;31�1952.

99. Chen HS, Lipton S. The chemical biology of clinically

tolerated NMDA receptor antagonists. J Neurochem

2006;97�1611–26.

100. Tadie M, D’ Arbigny P, Mathe J, et al. Acute spinal cord

injury. Early care and treatment in a multicenter study with

gacylidine. Soc Neurosci 1999;25�1090.

101. Kwon B, Okon E, Hillyer J. A systematic review of

non-invasive pharmacologic neuroprotective treatments for

acute spinal cord injury. J Neurotrauma 2011;28(8):1545–88.

102. Sturges B, LeCouteur R. Intracranial hypertension. In:

Silverstein D, Hopper K,editors. Small animal critical care medicine. 1st edition. St Louis (MO): ElsevierSaunders; 2009. p.

423–9.

103. Brain Trauma Foundation T, National Association of

State EMS Officials T,National Association of EMTs. Guidelines for

prehospital management of traumatic brain injury. Prehosp

Emerg Care 2007;12(1):1–52.

104. Davis D, Dunford J, Poste J, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid

sequence intubation of severely head-injured patients. J Trauma

2004;57(1):1–8.

105. Muizelaar J, Marmarou A, Ward J, et al. Adverse effects

of prolonged hyperventilationin patients with severe head injury;

a randomized clinical trial. J Neurosurg 1991;75(5):731–9.

106. Deutschman C, Konstantinides F, Raup S. Physiological and metabolic response to isolated closed-head injury. Part i:

basal metabolic state: correlations of metabolic and physiological parameters with fasting and stressed controls. J Neurosurg

1986;64�89–98.

107. Jeremitsky E, Omert L, Dunham C, et al. The impact of

hyperglycemia on patients with severe brain injury. J Trauma

2005;58(1):47–50.

108. Syring R, Otto C, Drobatz K. Hyperglycemia in dogs

and cats with head trauma:122 cases (1997-1999). J Am Vet

Med Assoc 2001;218�1124–9.

109. Vespa P, McArthur D, Stein N, et al. Tight glycemic

control increases metabolic distress in traumatic brain injury: a

randomized controlled within subjects trial. Crit Care Med

2012;40(6):1923–9.

110. Green D, O’ Phelan K, Bassin S, et al. Intensive versus

conventional insulin therapy in critically ill neurologic patients.

Neurocrit Care 2010;13(3):299–306.

111. Bilotta F, Caramia R, Cernak I, et al. Intensive insulin

therapy after severe traumatic brain injury: randomized clinical

trial. Neurocrit Care 2008;9(2):159–66.

112. Dewey C. Urinary bladder management. In: Dewey

CW, editor. A practical guide to canine and feline neurology. St

Louis (MO): Elsevier Saunders; 2003. p. 419–26.

113. Bubenik L, Hosgood G. Urinary tract infection in dogs

with thoracolumbar intervertebral disc herniation and urinary

bladder dysfunction managed by manual expression, indwelling

catheterization or intermittent catheterization. Vet Surg

2008;37�791–800.

114. Smarick S, Haskins S, Aldrich J, et al. Incidence of

catheter-associated urinary tract infection among dogs in a

small animal intensive care unit. J Am Vet Med Assoc

2004;224(12):1936–40.

115. Ng I, Lim J, Wong H. Effects of head posture on cerebral hemodynamics its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery

2004;54(3):593–7.

116. Sadaka F, Veremakis C. Therapeutic hypothermia for

the management of intracranial hypertension in severe traumatic

brain injury: a systematic review. Brain Inj 2012;26(7–8):899–908.

117. McCarthy P, Scott L, Ganta C, et al. Hypothermic protection in traumatic brain injury. Pathophysiology 2012;735–57.

118. Wijayatilake D, Shepherd S, Sherren P. Updates in the

management of intracranial pressure in traumatic brain injury.

Curr Opin Anaesthesiol 2012;25(5):540–7.

119. Hutchinson P, Corteen E, Czosnyka M, et al. Decompressive craniectomy intraumatic brain injury: the randomized

multicenter RESCUEicp study. Acta Neurochir 2006;96(S):17–20.

120. La Rosa G, Conti A, Cardali S, et al. Does early decompression improve neurological outcome of spinal cord injured

patients? Appraisal of the literature using a meta-analytical

approach. Spinal Cord 2004;42(9):503–12.

121. Croce M, Bee T, Pritchard E, et al. Does optimal timing

for spine fracture fixation exist? Ann Surg 2001;233(6):851–8.

122. Fehlings M, Perrin R. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of

recent clinical evidence. Spine 2006;31(11): S28–35.

123. Jeffery ND. Vertebral fracture and luxation in small

animals. Vet Clin North Am Small Anim Pract 2010;40(5):809–28.

124. Denis F. Spinal instability as defined by the three-column spine concept in acute spinal trauma. Clin Orthop Relat Res

1984;189�65–76.

125. Hillman R, Kengeri S, Waters D. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim

Hosp Assoc 2009;45�155–63.

126. Cherrone K, Dewey C, Coates J, et al. A retrospective

comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp

Assoc 2004;40�316–20.

127. Gage E, Hoerlein B. Hemilaminectomy and dorsal

laminectomy for relieving compressions of the spinal cord in the

dog. J Am Vet Med Assoc 1968;152: 351–9.

128. Seim H 3rd, Prata R. Ventral decompression for the

treatment of cervical disk disease in the dog: a review of 54

cases. J Am Anim Hosp Assoc 1982;18: 233–40.

129. Gill P, Lippincott C, Anderson S. Dorsal laminectomy in

the treatment of cervical intervertebral disk disease in small

dogs: a retrospective study of 30 cases.J Am Anim Hosp Assoc

1996;32�77–80.

130. Felts J, Prata R. Cervical disk disease in the dog: intraforaminal and lateral extrusions. J Am Anim Hosp Assoc

1983;19�755–60.

131. Tanaka H, Nakayama M, Takase K. Usefulness of hemilaminectomy for cervical intervertebral disk disease in small

dogs. J Vet Med Sci 2005;67�679–83.

132. McCartney W. Comparison of recovery times and

complication rates between a modified slanted slot and the

standard ventral slot for the treatment of cervical disc disease in

20 dogs. J Small Anim Pract 2007;48�498–501.

133. Levine J, Levine G, Johnson S, et al. Evaluation of the

success of medical management for presumptive thoracolumbar

intervertebral disk herniation in dogs. Vet Surg 2007;36�482–91.

134. Kent M. Intraaxial spinal cord hemorrhage secondary

to atlantoaxial subluxationin a dog. J Am Anim Hosp Assoc

2010;46(2):132–7.

135. Cerda-Gonzalez S, Olby NJ. Fecal incontinence associated with epidural spinalhematoma and intervertebral disk

extrusion in a dog. J Am Vet Med Assoc 2006;228(2):230–5.

136. Caswell JL, Nykamp SG. Intradural vasculitis and hemorrhage in full sibling Welsh springer spaniels. Can Vet J

2003;44(2):137–9.

137. Tidwell AS, Specht A, Blaeser L, et al. Magnetic resonance imaging features ofextradural hematomas associated with

intervertebral disc herniation in a dog.Vet Radiol Ultrasound

2001;43(4):319–24.

138. Jeffery N, Lakatos A, Franklin R. Autologous olfactory

glial cell transplantation is eliable and safe in naturally occurring

spinal cord injury. J Neurotrauma 2005;22(11):1282–93.

139. Nishida H, Nakayama M, Tanaka H. Safety of autologous bone marrow stromal cell transplantation in dogs with

acute spinal cord injury. Vet Surg 2012;41�437–42.

140. Olby N, Levine J, Harris T. Long-term functional outcome of dogs with severe injuries of the thoracolumbar spinal

cord: 87 cases (1996-2001). J Am VetMed Assoc

2003;222(6):762–9.

141. Dewey CW. Myelopathies: disorders of the spinal cord.

In: Dewey CW, editor. A practical guide to canine and feline neurology. 2nd edition. Ames (IA):Wiley-Blackwell; 2008. p. 323–88.

142. Hawthorne J, Blevins W, Wallace L, et al. Cervical vertebral fractures in 56 dogs:a retrospective study. J Am Anim

Hosp Assoc 1999;35�135–46.

143. Eminaga S, Palus V, Cherubini G. Acute spinal cord

injury in the cat: causes,treatment and prognosis. J Feline Med

Surg 2011;13(11):850–62.spontaneous hyperadrenocorticism in

dogs. Part 2: Adrenal function testing and differentiating tests[J].

The Veterinary Journal, 2019, 252�105343.

第125页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 123 -

结果

已发表的研究表明,15%患有GME的犬在接受

治疗前死亡(Munana and Luttgen, 1998; Granger et

al.,2010)。尽管开始了适当和积极的免疫抑制治疗,

一项研究中仍有56%的犬死于MUO或被安乐死,其

中33%的犬在诊断后3天内死亡(Lowrie et al., 2013)。

Cornelis等人(2016a)报告了类似的结果;在一项对

116例犬的研究中,尽管开始了适当的治疗,但25%

的犬在诊断后7天内死亡或被安乐死。Levine等人

(2008)报道,与未接受任何治疗的NME犬相比,接

受任何形式治疗的NME犬的平均ST明显更长。大多

数患有MUO或GME的犬在确诊后3个月内死亡

(Thomas and Eger, 1989; Smith et al., 2009; Lowrie et

al., 2013)。在一项研究中,19只犬中的18只(95%)存

活了1个月(Smith et al.,2009),但这些犬中只有一

只未能存活1年。此外,活了1年的犬通常能活更长

的时间,这表明活过1个月的动物可能有更大的机会

再活几年(Smith et al.,2009)。

在已发表的文献中,已经描述了57例患有MUO

的犬,并对50例犬进行了随访。总体而言,50例犬

中有30例(60%)死于本身的疾病或被安乐死,数据采

集时18例犬还活着(Griffin et al., 2008; Wong et al.,

2010; Cornelis et al., 2017a)。被诊断为不明原因脑

膜脊髓炎的病例的自发死亡可能是由于疾病的渐进

性发展涉及大脑,尽管需要进一步的研究来证实这

些发现。

结束语

MUO是一种以多种病理为特征的疾病,其发病

机制、诊断标准、最合适的治疗方案、短期和长期

预后和结局仍存在许多问题。从临床角度看,为了

得到(更确定的)诊断而进行所有诊断试验的费用可能

很高,可能导致神经系统恶化,甚至可能延误适当

的治疗。此外,获得明确诊断的脑活检的使用性受

限,且与不良结果的显著风险相关。为什么有些动

物在一种通常被认为是致命的疾病中,不管有没有

治疗,都能存活数年?最初的诊断不准确吗?如果存

在,最好的治疗方案是什么?评估治疗效果的最佳方

法是什么?通过临床改善来评价治疗效果,还是通过

进一步的定量调查来评价效果更好?重复脑脊液采样

和/或MRI是否能准确反映治疗成功,重复麻醉和脑

脊液采集的好处是否值得冒采集的风险?不同的纳入

标准使解释和比较以往的研究变得困难,应该考虑

结论

由于通常在死前无法进行组织学诊断,临床医

生应依赖以前建立的用于诊断MUO的临床诊断标

准。在犬瘟热病毒感染罕见的国家,MUO是导致犬

类脑膜脑炎的最常见原因,通常认为主要影响青年

至中年、中型至小型品种的玩具犬和㹴类犬。然

而,最近的研究结果表明,所有品种和年龄的犬都

可能受到影响。MRI被认为是诊断与炎症性中枢神经

系统疾病一致的颅内或脊髓异常的首选成像方式。

目前还没有根据MRI检查结果确定区分MUO不同病

理形式(GME、NME和NLE)的标准,这种区分在临床

或发病机制、治疗和结果方面的重要性还没有确

定。免疫抑制药物是目前公认的治疗MUO的主要药

物。已有几项研究报道了MUO的长期预后,报道的

MST范围为28-1834天。两项研究表明,25-33%的

犬会在诊断后的一周内死亡,尽管开始了适当的治

疗。目前还不清楚为什么一些犬对治疗反应良好,

而另一些即使有适当的治疗则没有。需要进一步研

究MUO的病因和病理生理机制,确定可规范临床诊

断的诊断指标,制定循证治疗方案,并确定临床可

靠的预后指标。

利益冲突声明

译者略

重新审视使用的严格的诊断标准。这可能使多中心

临床研究能够进一步描述推测患有MUO的犬的临床

表现、诊断结果、治疗结果和预后,接受并非所有

犬都符合以往研究的所有纳入标准的可能性。还应

进一步调查遗传因素和可能的触发因素。

参考文献:

1.Adamo, F.P., O’ Brien, R.T., 2004. Use of cyclosporine

to treat granulomatous meningoencephalitis in three dogs.

J. Am. Vet. Med. Assoc. 225, 1211–1216.

2.Adamo, P.F., Rylander, H., Adams, W.M., 2007. Ciclosporin use in multi-drug therapy for meningoencephalomyelitis of unknown aetiology in dogs. J. Small Anim. Pract. 48,

486–496.

3.Bailey, C.S., Higgins, R.J., 1986. Characteristics of

cerebrospinal fluid associated with canine granulomatous

meningoencephalomyelitis: a retrospective study. J. Am. Vet.

Med. Assoc. 188, 418–421.

4.Barber, R.M., Porter, B.F., Li, Q., May, M., Clairborne, M.K.,

Allison, A.B., Howerth, E.W., Butler, A., Wei, S., Levine, J.M., Brown,

D.R., Schatzberg, S.J., 2012. Broadly reactive polymerase chain

reaction for pathogen detection in canine granulomatous meningoencephalomyelitis and necrotizing meningoencephalitis. J.

Vet. Intern. Med. 26 (4), 962–968.

5.Barnoon, I., Shamir, M.H., Aroch, I., Bdolah-Abram, T.,

Srugo, I., Konstantin, L., Chai, O., 2016. Retrospective evaluation

of combined mycophenolate mofetil and prednisone treatment

for meningoencephalomyelitis of unknown etiology in dogs: 25

cases (2005-2011). J. Vet. Emerg. Crit. Care 26 (1), 116–124.

6.Bateman, S.W., Parent, J.M., 1999. Clinical findings, treatment and outcome of dogs with status epilepticus or cluster

seizures: 156 cases (1990–1995). J. Am. Vet. Med. Assoc. 215,

1463–1468.

7. Beckmann, K., Carrera, I., Steffen, F., Golini, L., Kircher,

P.R., Schneider, U., Bley, C.R., 2015. A newly designed radiation

therapy protocol in combination with prednisolone as treatment

for meningoencephalitis of unknown origin in dogs: a prospective pilot study introducing magnetic resonance spectroscopy as

a monitor tool. Acta Vet. Scand. 57 (4), 1–14.

8.Braund, K.G., 1985. Granulomatous meningoencephalomyelitis. J. Am. Vet. Med. Assoc. 186, 138–141.

9.Carrera, I., Richter, H., Beckmann, K., Meier, D., Dennler,

M., Kircher, P.R., 2016. Evaluation of intracranial neoplasia and

non-infectious meningoencephalitis in dogs by use of short

echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla. Am. J. Vet. Res. 77, 452–462.

10.Carvalho, C.F., Perez, R.B., Chamas, M.C., Maiorka, P.C.,

2012. Transcranial Doppler sonographic findings in granulomatous meningoencephalitis in small breed dogs. Can. Vet. J. 53,

855–859.

11. Cherubini, G.B., Platt, S.R., Anderson, T.J., 2006. Characteristics of magnetic resonance images of granulomatous meningoencephalomyelitis in 11 dogs. Vet. Rec. 159, 504–515.

12.Coates, J.R., Barone, G., Dewey, C.W., Vitale, C.L., Holloway-Azene, N.M., Sessions, J.K., 2007. Procarbazine as adjunctive therapy for treatment of dogs with presumptive antemortem diagnosis of granulomatous meningoencephalomyelitis: 21

cases (1998-2004). J. Vet. Intern. Med. 21, 100–106.

13. Coates, J.R., Jeffery, N.D., 2014. Perspectives on meningoencephalomyelitis of unknown origin. Vet. Clin. North Am.

Small Anim. Pract. 44, 1157–1185. Cooper, J.J., Schatzberg, S.J.,

Vernau, K.M., Summers, B.A., Porter, B.F., Siso, S., Young, B.D.,

Levine, J.M., 2014. Necrotizing meningoencephalitis in atypical

dog breeds: a case series and literature review. J. Vet. Intern.

Med. 28, 198–203.

14.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2016a.

Prognostic factors for 1- week survival in dogs diagnosed with

meningoencephalitis of unknown aetiology. Vet. J. 214, 91–95.

15. Cornelis, I., Volk, H.A., De Decker, S., 2016b. Clinical

presentation, diagnostic findings and long-term survival in large

breed dogs with meningoencephalitis of unknown aetiology.

Vet. Rec. 179 (6), 147.

16.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2017a.

Clinical presentation, diagnostic findings and outcome in dogs

diagnosed with presumptive spinal- only meningoencephalomyelitis of unknown origin. J. Small Anim. Pract. 58, 174–182.

17. Cornelis, I., Van Ham, L., De Decker, S., Kromhout, K.,

Goethals, K., Gielen, I., Bhatti, S., 2017b. Sole prednisolone therapy in canine meningoencephalitis of unknown aetiology. Flemish

Vet. J. 86, 24–29.

18. Cuddon, P., 2002. New treatments for granulomatous

meningoencephalomyelitis. Proceedings of the 20th annual

ACVIM forum, Dallas, USA, pp. 319–321.

19. Cuddon, P., Smith-Maxie, L., 1984. Reticulosis of the

central nervous system in the dog. Compend. Contin. Educ.

Pract. Vet. 6, 23–32.

20.de Stefani, A., De Risio, L., Matiasek, L., Feliu-Pascual,

A.L., 2007. Intravenous cytosine arabinoside in the emergency

treatment of 9 dogs with central nervous system inflammatory

disease of unknown origin. In; Proceedings of the 20th annual

symposium of the ESVN/ECVN, Bern, Switzerland. J. Vet. Intern.

Med. 22 (2), 508. Eom, K.D., Lim, C.Y., Gu, S.H., Kang, B.T., Kim,

Y.B., Jang, D.P., Woo, E.J., Kim, D., Cho, Z. H., Park, H.M., 2008.

Positron emission tomography features of canine necrotizing

meningoencephalitis. Vet. Radiol. Ultrasound 49 (6), 595–599.

21.Feliu-Pascual, A.L., Matiasek, L., de Stefani, A., Beltran,

E., De Risio, L., 2007. Efficacy of mycophenolate mofetil for the

treatment of granulomatous meningoencephalomyelitis: preliminary results. Proceedings of the 20th annual symposium of the

ESVN/ECVN, Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509.

22. Flegel, T., Henke, D., Boetticher, I.C., Aupperle, H., Oechtering, G., Matiasek, K., 2008. Magnetic resonance imaging findings in histologically confirmed pug dog encephalitis. Vet.

Radiol. Ultrasound 49 (5), 419–424.

23.Flegel, T., Boettcher, I.C., Matiasek, K., Oevermann, A.,

Doherr, M.G., Oechtering, G., Henke, D., 2011. Comparison of oral

administration of lomustine and prednisolone or prednisolone

alone as treatment for granulomatous meningoencephalomyelitis or necrotizing encephalitis in dogs. J. Am. Vet. Med. Assoc.

238 (3), 337–345.

24.Flegel, T., Oevermann, A., Oechetering, G., Matiasek, K.,

2012. Diagnostic yield and adverse effects of MRI-guided

free-hand biopsies through a mini-burr hole in dogs with

encephalitis. J. Vet. Intern. Med. 26, 969–976.

25.Gnirs, K., 2006. Ciclosporin treatment of suspected

granulomatous meningoencephalomyelitis in three dogs. J.

Small Anim. Pract. 47 (4), 201–206. Granger, N., Smith, P.M.,

Jeffery, N.D., 2010.

26.Clinical findings and treatment of non-infectious meningoencephalomyelitis in dogs: a systematic review of 457

published cases from 1962 to 2008. Vet. J. 184, 290–297.

27.Greer, K.A., Wong, A.K., Liu, H., Famula, T.R., Pederson,

N.C., Ruhe, A., Wallace, M., Neff, M.W., 2010. Necrotizing meningoencephalitis of Pug dogs associates with dog leucocyte antigen class II and resembles acute variant forms of multiple sclerosis. Tissue Antigens 76 (2), 110–118.

28.Gregory, C.R., Stewart, A., Sturges, B., DeManvelle, T.,

Cannon, A., Ortega, T., Harb, M., Morris, R.E., 1998. Leflunomide

effectively treats naturally occurring immune- mediated and

inflammatory diseases of dogs that are unresponsive to conventional therapy. Transpl. Proc. 30 (8), 4143–4148.

29. Griffin, J.F., Levine, M., Levine, G.J., Fosgate, G.T., 2008.

Meningomyelitis in dogs: a retrospective review of 28 cases

(1999 to 2007). J. Small Anim. Pract. 49, 509– 517.

30. Higgins, R.J., Dickinson, P.J., Kube, S.A., Moore, P.F.,

Couto, S.S., Vernau, K.M., Sturges, B.K., Lecouteur, R.A., 2008.

Necrotizing meningoencephalitis in five Chihuahua dogs. Vet.

Pathol. 45, 336–346.

31.Jung, D.I., Kang, B.T., Park, C., Yoo, J.H., Gu, S.H., Jeon,

H.W., Kim, J.W., Heo, R.Y., Sung, H.J., Eom, K.D., Lee, J.H., Woo,

E.J., Park, H.M., 2007. A comparison of combination therapy

(cyclosporine plus prednisolone) with sole prednisolone therapy

in 7 dogs with necrotizing meningoencephalitis. J. Vet. Med. Sci.

69, 1303–1306.

32.Jung, D.I., Kim, J.W., Park, H.M., 2011. Long-term immunosuppressive therapy with cyclosporine plus prednisolone for

necrotizing meningoencephalitis in a pekingese dog. J. Vet. Med.

Sci. 74, 765–769.

33. Jung, D.I., Lee, H.C., J, H.A., Jung, H.W., Jeon, J.H., Moon,

J.H., Lee, J.H., Kim, N.H., Kang, B.T., Cho, K.W., 2013. Unsuccessful

cyclosporine plus prednisolone therapy for autoimmune meningoencephalitis in three dogs. J. Vet. Med. Sci. 75 (12), 1661–

1665.

34. Kang, B.T., Kim, S.G., Lim, C.Y., Gu, S.H., Jang, D.P., Kim,

Y.B., Kim, D.Y., Woo, E.J., Cho, Z. H., Park, H.M., 2010. Correlation

between fluorodeoxyglucose positron emission tomography and

magnetic resonance imaging findings of non-suppurative meningoencephalitis in 5 dogs. Can. Vet. J. 51, 986–992.

35. Kipar, A., Baumgartner, W., Vogl, C., Gaedke, K., Wellman, M., 1998. Immunohistochemical characterization of inflammatory cells in brains of dogs with granulomatous meningoencephalitis. Vet. Pathol. 35 (1), 43–52.

36.Koblik, P.D., LeCouteur, R.A., Higgins, R.J., Bollen, A.W.,

Vernau, K.M., Kortz, G.D., Ilkiw, J.E., 1999. CT-guided brain biopsy

using a modified pelorus mark III stereotactic system: experience

with 50 dogs. Vet. Radiol. Ultrasound 40 (4), 434–440.

37.Lamb, C.R., Croson, P.J., Capello, R., Cherubini, G.B.,

2005. Results of MR imaging of the head in dogs with inflammatory cerebrospinal fluid. Vet. Radiol. Ultrasound 37, 424–427.

38.Levine, J.M., Fosgate, G.T., Porter, B., Schatzberg, S.J.,

Greer, K., 2008. Epidemiology of necrotizing meningoencephalitis in Pug dogs. J. Vet. Intern. Med. 22 (4), 961– 968.

39. Lowrie, M., Smith, P.M., Garosi, L., 2013. Meningoencephalitis of unknown origin: investigation of prognostic factors

and outcome using a standard treatment protocol. Vet. Rec. 172

(20), 527.

40.Lowrie, M., Thomson, S., Smith, P., Garosi, L., 2016.

Effect of a constant rate infusion of cytosine arabinoside on

mortality in dogs with meningoencephalitis of unknown origin.

Vet. J. 213, 1–5. Menaut, P., Landart, J., Behr, S., Lanore, D.,

Trumel, C., 2008. Treatment of 11 dogs with meningoencephalomyelitis of unknown origin with a combination of prednisolone

and cytosine arabinoside. Vet. Rec. 162 (8), 241–245.

41.Mercier, M., Barnes Heller, H.L., 2015. Efficacy of glucocorticoid monotherapy for treatment of canine meningo-encephalomyelitis of uknown etiology: a prospective study in 16

dogs. Vet. Med. Sci. 1, 16–22.

42.Munana, K.R., Luttgen, P.J., 1998. Prognostic factors for

dogs with granulomatous meningoencephalomyelitis: 42 cases

(1982-1996). J. Am. Vet. Med. Assoc. 212, 1902–1906.

43.Oliphant, B.J., Barnes Heller, H.L., White, J.M., 2017. Retrospective study evaluating assocations between midine shift

on magnetic resonance imaging and survival in dogs diagnosed

with meningoencephalitis of unknown etiology. Vet. Radiol.

Ultrasound 58 (1), 38–43.

44.Pakozdy, A., Leschnik, M., Kneissl, S., Gumpenberger, M.,

Gruber, A., Tichy, A., Thalhammer, J.G., 2009. Improved survival

time in dogs with suspected GME treated with ciclosporine. Vet.

Rec. 164, 89–91.

45.Russo, M.E., 1979. Primary reticulosis of the central nervous system in dogs. J. Am. Vet. Med. Assoc. 174, 492–500.

46.Schatzberg, S.J., Haley, N.J., Barr, S.C., de Lahunta, A.,

Sharp, N.J.H., 2005. Polymerase chain reaction screening for

DNA viruses in paraffin-embedded brains from dogs with necrotizing meningoencephalitis, necrotizing leucoencephalitis and

granulomatous meningoencephalitis. J. Vet. Intern. Med. 19 (4),

553–559.

47.Sisson, A.F., LeCouteur, R.A., Dow, S.W., Gilette, E.L.,

1989. Radiation therapy of granulomatous meningoencephalomyelitis of dogs. ACVIM forum proceedings. J. Vet. Intern. Med. 3

(2), 119.

48.Smith, P.M., Stalin, C.E., Shaw, D., Granger, N., Jeffery,

N.D., 2009. Comparison of two regimens for the treatment of

meningoencephalomyelitis of unknown etiology. J. Vet. Intern.

Med. 23, 520–526.

49.Sorjonen, D.C., 1990. Clinical and histopathological features of granulomatous meningoencephalomyelitis in dogs. J.

Am. Anim. Hosp. Assoc. 26, 141–147.

50. Talarico, L.R., Schatzberg, S.J., 2010. Idiopathic granulomatous and necrotising inflammatory disorders of the canine

central nervous system: a review and future perspectives. J.

Small Anim. Pract. 51, 138–149.

51.Thomas, J.B., Eger, C., 1989. Granulomatous meningoencephalomyelitis in 21 dogs. J. Small Anim. Pract. 30, 287–293.

52.Tipold, A., 1995. Diagnosis of inflammatory and infectious diseases of the central nervous system in dogs: a retrospective study. J. Vet. Intern. Med. 9, 304–314.

53.Uchida, K., Park, E., Tsuboi, M., Chambers, J.K., Nakayama, H., 2016. Pathological and immunological features of canine

necrotising meningoencephalitis and granulomatous meningoencephalitis. Vet. J. 213, 72–77.

54.Uriarte, J.L., Thibaud, K., Gnirs, S., Blot, S., 2007. Lomustine treatment in noninfectious meningoencephalitis in 8 dogs,

Proceedings of the 20th annual symposium of the ESVN/ECVN,

Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509. von Praun, F.,

Matiasek, K., Grevel, V., Alef, M., Flegel, T., 2006. Magnetic resonance imaging and pathologic findings associated with necrotizing encephalitis in two Yorkshire terriers. Vet. Radiol. Ultrasound 47, 260–264.

55.Wolff, C.A., Holmes, S.P., Young, B.D., Chen, A.V., Kent,

M., Platt, S.R., Savage, M.Y., Schatzberg, S.J., Fosgate, G.T., Levine,

J.M., 2012. Magnetic resonance imaging for the differentiation of

neoplastic, inflammatory and cerebrovascular brain disease in

dogs. J. Vet. Intern. Med. 26, 589–597.

56.Wong, M.A., Hopkings, A.L., Meeks, J.C., Clarke, J.D.,

2010. Evaluation of treatment with a combination of azathioprine and prednisone in dogs with meningoencephalomyelitis of

undetermined etiology: 40 cases (2000-2007). J. Am. Vet. Med.

Assoc. 237 (8), 929–935.

57.Young, B., Levine, J.L., Fosgate, A., de Lahunta, A.,

Flegel, T., Matiasek, K., Miller, A., Silver, G., Sharp, N., Greer, K.,

Schatzberg, S.J., 2009. Magnetic resonance imaging characteristics of necrotizing meningoencephalitis in pug dogs. J. Vet.

Intern. Med. 23 (3), 527–535.

58.Zarfoss, M., Schatzberg, S., Venator, K., Cutter-Schatzberg, K., Cuddon, P., Pintar, J., Weinkle, T., Scarlett, J.,

deLahunta, A., 2006. Combined cytosine arabinoside and prednisone therapy for meningoencephalitis of unknown aetiology in

10 dogs. J. Small Anim. Pract. 47, 588–595.

第126页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 124 -

参考文献:

1.Adamo, F.P., O’ Brien, R.T., 2004. Use of cyclosporine

to treat granulomatous meningoencephalitis in three dogs.

J. Am. Vet. Med. Assoc. 225, 1211–1216.

2.Adamo, P.F., Rylander, H., Adams, W.M., 2007. Ciclosporin use in multi-drug therapy for meningoencephalomyelitis of unknown aetiology in dogs. J. Small Anim. Pract. 48,

486–496.

3.Bailey, C.S., Higgins, R.J., 1986. Characteristics of

cerebrospinal fluid associated with canine granulomatous

meningoencephalomyelitis: a retrospective study. J. Am. Vet.

Med. Assoc. 188, 418–421.

4.Barber, R.M., Porter, B.F., Li, Q., May, M., Clairborne, M.K.,

Allison, A.B., Howerth, E.W., Butler, A., Wei, S., Levine, J.M., Brown,

D.R., Schatzberg, S.J., 2012. Broadly reactive polymerase chain

reaction for pathogen detection in canine granulomatous meningoencephalomyelitis and necrotizing meningoencephalitis. J.

Vet. Intern. Med. 26 (4), 962–968.

5.Barnoon, I., Shamir, M.H., Aroch, I., Bdolah-Abram, T.,

Srugo, I., Konstantin, L., Chai, O., 2016. Retrospective evaluation

of combined mycophenolate mofetil and prednisone treatment

for meningoencephalomyelitis of unknown etiology in dogs: 25

cases (2005-2011). J. Vet. Emerg. Crit. Care 26 (1), 116–124.

6.Bateman, S.W., Parent, J.M., 1999. Clinical findings, treatment and outcome of dogs with status epilepticus or cluster

seizures: 156 cases (1990–1995). J. Am. Vet. Med. Assoc. 215,

1463–1468.

7. Beckmann, K., Carrera, I., Steffen, F., Golini, L., Kircher,

P.R., Schneider, U., Bley, C.R., 2015. A newly designed radiation

therapy protocol in combination with prednisolone as treatment

for meningoencephalitis of unknown origin in dogs: a prospective pilot study introducing magnetic resonance spectroscopy as

a monitor tool. Acta Vet. Scand. 57 (4), 1–14.

8.Braund, K.G., 1985. Granulomatous meningoencephalomyelitis. J. Am. Vet. Med. Assoc. 186, 138–141.

9.Carrera, I., Richter, H., Beckmann, K., Meier, D., Dennler,

M., Kircher, P.R., 2016. Evaluation of intracranial neoplasia and

non-infectious meningoencephalitis in dogs by use of short

echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla. Am. J. Vet. Res. 77, 452–462.

10.Carvalho, C.F., Perez, R.B., Chamas, M.C., Maiorka, P.C.,

2012. Transcranial Doppler sonographic findings in granulomatous meningoencephalitis in small breed dogs. Can. Vet. J. 53,

855–859.

11. Cherubini, G.B., Platt, S.R., Anderson, T.J., 2006. Characteristics of magnetic resonance images of granulomatous meningoencephalomyelitis in 11 dogs. Vet. Rec. 159, 504–515.

12.Coates, J.R., Barone, G., Dewey, C.W., Vitale, C.L., Holloway-Azene, N.M., Sessions, J.K., 2007. Procarbazine as adjunctive therapy for treatment of dogs with presumptive antemortem diagnosis of granulomatous meningoencephalomyelitis: 21

cases (1998-2004). J. Vet. Intern. Med. 21, 100–106.

13. Coates, J.R., Jeffery, N.D., 2014. Perspectives on meningoencephalomyelitis of unknown origin. Vet. Clin. North Am.

Small Anim. Pract. 44, 1157–1185. Cooper, J.J., Schatzberg, S.J.,

Vernau, K.M., Summers, B.A., Porter, B.F., Siso, S., Young, B.D.,

Levine, J.M., 2014. Necrotizing meningoencephalitis in atypical

dog breeds: a case series and literature review. J. Vet. Intern.

Med. 28, 198–203.

14.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2016a.

Prognostic factors for 1- week survival in dogs diagnosed with

meningoencephalitis of unknown aetiology. Vet. J. 214, 91–95.

15. Cornelis, I., Volk, H.A., De Decker, S., 2016b. Clinical

presentation, diagnostic findings and long-term survival in large

breed dogs with meningoencephalitis of unknown aetiology.

Vet. Rec. 179 (6), 147.

16.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2017a.

Clinical presentation, diagnostic findings and outcome in dogs

diagnosed with presumptive spinal- only meningoencephalomyelitis of unknown origin. J. Small Anim. Pract. 58, 174–182.

17. Cornelis, I., Van Ham, L., De Decker, S., Kromhout, K.,

Goethals, K., Gielen, I., Bhatti, S., 2017b. Sole prednisolone therapy in canine meningoencephalitis of unknown aetiology. Flemish

Vet. J. 86, 24–29.

18. Cuddon, P., 2002. New treatments for granulomatous

meningoencephalomyelitis. Proceedings of the 20th annual

ACVIM forum, Dallas, USA, pp. 319–321.

19. Cuddon, P., Smith-Maxie, L., 1984. Reticulosis of the

central nervous system in the dog. Compend. Contin. Educ.

Pract. Vet. 6, 23–32.

20.de Stefani, A., De Risio, L., Matiasek, L., Feliu-Pascual,

A.L., 2007. Intravenous cytosine arabinoside in the emergency

treatment of 9 dogs with central nervous system inflammatory

disease of unknown origin. In; Proceedings of the 20th annual

symposium of the ESVN/ECVN, Bern, Switzerland. J. Vet. Intern.

Med. 22 (2), 508. Eom, K.D., Lim, C.Y., Gu, S.H., Kang, B.T., Kim,

Y.B., Jang, D.P., Woo, E.J., Kim, D., Cho, Z. H., Park, H.M., 2008.

Positron emission tomography features of canine necrotizing

meningoencephalitis. Vet. Radiol. Ultrasound 49 (6), 595–599.

21.Feliu-Pascual, A.L., Matiasek, L., de Stefani, A., Beltran,

E., De Risio, L., 2007. Efficacy of mycophenolate mofetil for the

treatment of granulomatous meningoencephalomyelitis: preliminary results. Proceedings of the 20th annual symposium of the

ESVN/ECVN, Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509.

22. Flegel, T., Henke, D., Boetticher, I.C., Aupperle, H., Oechtering, G., Matiasek, K., 2008. Magnetic resonance imaging findings in histologically confirmed pug dog encephalitis. Vet.

Radiol. Ultrasound 49 (5), 419–424.

23.Flegel, T., Boettcher, I.C., Matiasek, K., Oevermann, A.,

Doherr, M.G., Oechtering, G., Henke, D., 2011. Comparison of oral

administration of lomustine and prednisolone or prednisolone

alone as treatment for granulomatous meningoencephalomyelitis or necrotizing encephalitis in dogs. J. Am. Vet. Med. Assoc.

238 (3), 337–345.

24.Flegel, T., Oevermann, A., Oechetering, G., Matiasek, K.,

2012. Diagnostic yield and adverse effects of MRI-guided

free-hand biopsies through a mini-burr hole in dogs with

encephalitis. J. Vet. Intern. Med. 26, 969–976.

25.Gnirs, K., 2006. Ciclosporin treatment of suspected

granulomatous meningoencephalomyelitis in three dogs. J.

Small Anim. Pract. 47 (4), 201–206. Granger, N., Smith, P.M.,

Jeffery, N.D., 2010.

26.Clinical findings and treatment of non-infectious meningoencephalomyelitis in dogs: a systematic review of 457

published cases from 1962 to 2008. Vet. J. 184, 290–297.

27.Greer, K.A., Wong, A.K., Liu, H., Famula, T.R., Pederson,

N.C., Ruhe, A., Wallace, M., Neff, M.W., 2010. Necrotizing meningoencephalitis of Pug dogs associates with dog leucocyte antigen class II and resembles acute variant forms of multiple sclerosis. Tissue Antigens 76 (2), 110–118.

28.Gregory, C.R., Stewart, A., Sturges, B., DeManvelle, T.,

Cannon, A., Ortega, T., Harb, M., Morris, R.E., 1998. Leflunomide

effectively treats naturally occurring immune- mediated and

inflammatory diseases of dogs that are unresponsive to conventional therapy. Transpl. Proc. 30 (8), 4143–4148.

29. Griffin, J.F., Levine, M., Levine, G.J., Fosgate, G.T., 2008.

Meningomyelitis in dogs: a retrospective review of 28 cases

(1999 to 2007). J. Small Anim. Pract. 49, 509– 517.

30. Higgins, R.J., Dickinson, P.J., Kube, S.A., Moore, P.F.,

Couto, S.S., Vernau, K.M., Sturges, B.K., Lecouteur, R.A., 2008.

Necrotizing meningoencephalitis in five Chihuahua dogs. Vet.

Pathol. 45, 336–346.

31.Jung, D.I., Kang, B.T., Park, C., Yoo, J.H., Gu, S.H., Jeon,

H.W., Kim, J.W., Heo, R.Y., Sung, H.J., Eom, K.D., Lee, J.H., Woo,

E.J., Park, H.M., 2007. A comparison of combination therapy

(cyclosporine plus prednisolone) with sole prednisolone therapy

in 7 dogs with necrotizing meningoencephalitis. J. Vet. Med. Sci.

69, 1303–1306.

32.Jung, D.I., Kim, J.W., Park, H.M., 2011. Long-term immunosuppressive therapy with cyclosporine plus prednisolone for

necrotizing meningoencephalitis in a pekingese dog. J. Vet. Med.

Sci. 74, 765–769.

33. Jung, D.I., Lee, H.C., J, H.A., Jung, H.W., Jeon, J.H., Moon,

J.H., Lee, J.H., Kim, N.H., Kang, B.T., Cho, K.W., 2013. Unsuccessful

cyclosporine plus prednisolone therapy for autoimmune meningoencephalitis in three dogs. J. Vet. Med. Sci. 75 (12), 1661–

1665.

34. Kang, B.T., Kim, S.G., Lim, C.Y., Gu, S.H., Jang, D.P., Kim,

Y.B., Kim, D.Y., Woo, E.J., Cho, Z. H., Park, H.M., 2010. Correlation

between fluorodeoxyglucose positron emission tomography and

magnetic resonance imaging findings of non-suppurative meningoencephalitis in 5 dogs. Can. Vet. J. 51, 986–992.

35. Kipar, A., Baumgartner, W., Vogl, C., Gaedke, K., Wellman, M., 1998. Immunohistochemical characterization of inflammatory cells in brains of dogs with granulomatous meningoencephalitis. Vet. Pathol. 35 (1), 43–52.

36.Koblik, P.D., LeCouteur, R.A., Higgins, R.J., Bollen, A.W.,

Vernau, K.M., Kortz, G.D., Ilkiw, J.E., 1999. CT-guided brain biopsy

using a modified pelorus mark III stereotactic system: experience

with 50 dogs. Vet. Radiol. Ultrasound 40 (4), 434–440.

37.Lamb, C.R., Croson, P.J., Capello, R., Cherubini, G.B.,

2005. Results of MR imaging of the head in dogs with inflammatory cerebrospinal fluid. Vet. Radiol. Ultrasound 37, 424–427.

38.Levine, J.M., Fosgate, G.T., Porter, B., Schatzberg, S.J.,

Greer, K., 2008. Epidemiology of necrotizing meningoencephalitis in Pug dogs. J. Vet. Intern. Med. 22 (4), 961– 968.

39. Lowrie, M., Smith, P.M., Garosi, L., 2013. Meningoencephalitis of unknown origin: investigation of prognostic factors

and outcome using a standard treatment protocol. Vet. Rec. 172

(20), 527.

40.Lowrie, M., Thomson, S., Smith, P., Garosi, L., 2016.

Effect of a constant rate infusion of cytosine arabinoside on

mortality in dogs with meningoencephalitis of unknown origin.

Vet. J. 213, 1–5. Menaut, P., Landart, J., Behr, S., Lanore, D.,

Trumel, C., 2008. Treatment of 11 dogs with meningoencephalomyelitis of unknown origin with a combination of prednisolone

and cytosine arabinoside. Vet. Rec. 162 (8), 241–245.

41.Mercier, M., Barnes Heller, H.L., 2015. Efficacy of glucocorticoid monotherapy for treatment of canine meningo-encephalomyelitis of uknown etiology: a prospective study in 16

dogs. Vet. Med. Sci. 1, 16–22.

42.Munana, K.R., Luttgen, P.J., 1998. Prognostic factors for

dogs with granulomatous meningoencephalomyelitis: 42 cases

(1982-1996). J. Am. Vet. Med. Assoc. 212, 1902–1906.

43.Oliphant, B.J., Barnes Heller, H.L., White, J.M., 2017. Retrospective study evaluating assocations between midine shift

on magnetic resonance imaging and survival in dogs diagnosed

with meningoencephalitis of unknown etiology. Vet. Radiol.

Ultrasound 58 (1), 38–43.

44.Pakozdy, A., Leschnik, M., Kneissl, S., Gumpenberger, M.,

Gruber, A., Tichy, A., Thalhammer, J.G., 2009. Improved survival

time in dogs with suspected GME treated with ciclosporine. Vet.

Rec. 164, 89–91.

45.Russo, M.E., 1979. Primary reticulosis of the central nervous system in dogs. J. Am. Vet. Med. Assoc. 174, 492–500.

46.Schatzberg, S.J., Haley, N.J., Barr, S.C., de Lahunta, A.,

Sharp, N.J.H., 2005. Polymerase chain reaction screening for

DNA viruses in paraffin-embedded brains from dogs with necrotizing meningoencephalitis, necrotizing leucoencephalitis and

granulomatous meningoencephalitis. J. Vet. Intern. Med. 19 (4),

553–559.

47.Sisson, A.F., LeCouteur, R.A., Dow, S.W., Gilette, E.L.,

1989. Radiation therapy of granulomatous meningoencephalomyelitis of dogs. ACVIM forum proceedings. J. Vet. Intern. Med. 3

(2), 119.

48.Smith, P.M., Stalin, C.E., Shaw, D., Granger, N., Jeffery,

N.D., 2009. Comparison of two regimens for the treatment of

meningoencephalomyelitis of unknown etiology. J. Vet. Intern.

Med. 23, 520–526.

49.Sorjonen, D.C., 1990. Clinical and histopathological features of granulomatous meningoencephalomyelitis in dogs. J.

Am. Anim. Hosp. Assoc. 26, 141–147.

50. Talarico, L.R., Schatzberg, S.J., 2010. Idiopathic granulomatous and necrotising inflammatory disorders of the canine

central nervous system: a review and future perspectives. J.

Small Anim. Pract. 51, 138–149.

51.Thomas, J.B., Eger, C., 1989. Granulomatous meningoencephalomyelitis in 21 dogs. J. Small Anim. Pract. 30, 287–293.

52.Tipold, A., 1995. Diagnosis of inflammatory and infectious diseases of the central nervous system in dogs: a retrospective study. J. Vet. Intern. Med. 9, 304–314.

53.Uchida, K., Park, E., Tsuboi, M., Chambers, J.K., Nakayama, H., 2016. Pathological and immunological features of canine

necrotising meningoencephalitis and granulomatous meningoencephalitis. Vet. J. 213, 72–77.

54.Uriarte, J.L., Thibaud, K., Gnirs, S., Blot, S., 2007. Lomustine treatment in noninfectious meningoencephalitis in 8 dogs,

Proceedings of the 20th annual symposium of the ESVN/ECVN,

Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509. von Praun, F.,

Matiasek, K., Grevel, V., Alef, M., Flegel, T., 2006. Magnetic resonance imaging and pathologic findings associated with necrotizing encephalitis in two Yorkshire terriers. Vet. Radiol. Ultrasound 47, 260–264.

55.Wolff, C.A., Holmes, S.P., Young, B.D., Chen, A.V., Kent,

M., Platt, S.R., Savage, M.Y., Schatzberg, S.J., Fosgate, G.T., Levine,

J.M., 2012. Magnetic resonance imaging for the differentiation of

neoplastic, inflammatory and cerebrovascular brain disease in

dogs. J. Vet. Intern. Med. 26, 589–597.

56.Wong, M.A., Hopkings, A.L., Meeks, J.C., Clarke, J.D.,

2010. Evaluation of treatment with a combination of azathioprine and prednisone in dogs with meningoencephalomyelitis of

undetermined etiology: 40 cases (2000-2007). J. Am. Vet. Med.

Assoc. 237 (8), 929–935.

57.Young, B., Levine, J.L., Fosgate, A., de Lahunta, A.,

Flegel, T., Matiasek, K., Miller, A., Silver, G., Sharp, N., Greer, K.,

Schatzberg, S.J., 2009. Magnetic resonance imaging characteristics of necrotizing meningoencephalitis in pug dogs. J. Vet.

Intern. Med. 23 (3), 527–535.

58.Zarfoss, M., Schatzberg, S., Venator, K., Cutter-Schatzberg, K., Cuddon, P., Pintar, J., Weinkle, T., Scarlett, J.,

deLahunta, A., 2006. Combined cytosine arabinoside and prednisone therapy for meningoencephalitis of unknown aetiology in

10 dogs. J. Small Anim. Pract. 47, 588–595.

第127页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 125 -

参考文献:

1.Adamo, F.P., O’ Brien, R.T., 2004. Use of cyclosporine

to treat granulomatous meningoencephalitis in three dogs.

J. Am. Vet. Med. Assoc. 225, 1211–1216.

2.Adamo, P.F., Rylander, H., Adams, W.M., 2007. Ciclosporin use in multi-drug therapy for meningoencephalomyelitis of unknown aetiology in dogs. J. Small Anim. Pract. 48,

486–496.

3.Bailey, C.S., Higgins, R.J., 1986. Characteristics of

cerebrospinal fluid associated with canine granulomatous

meningoencephalomyelitis: a retrospective study. J. Am. Vet.

Med. Assoc. 188, 418–421.

4.Barber, R.M., Porter, B.F., Li, Q., May, M., Clairborne, M.K.,

Allison, A.B., Howerth, E.W., Butler, A., Wei, S., Levine, J.M., Brown,

D.R., Schatzberg, S.J., 2012. Broadly reactive polymerase chain

reaction for pathogen detection in canine granulomatous meningoencephalomyelitis and necrotizing meningoencephalitis. J.

Vet. Intern. Med. 26 (4), 962–968.

5.Barnoon, I., Shamir, M.H., Aroch, I., Bdolah-Abram, T.,

Srugo, I., Konstantin, L., Chai, O., 2016. Retrospective evaluation

of combined mycophenolate mofetil and prednisone treatment

for meningoencephalomyelitis of unknown etiology in dogs: 25

cases (2005-2011). J. Vet. Emerg. Crit. Care 26 (1), 116–124.

6.Bateman, S.W., Parent, J.M., 1999. Clinical findings, treatment and outcome of dogs with status epilepticus or cluster

seizures: 156 cases (1990–1995). J. Am. Vet. Med. Assoc. 215,

1463–1468.

7. Beckmann, K., Carrera, I., Steffen, F., Golini, L., Kircher,

P.R., Schneider, U., Bley, C.R., 2015. A newly designed radiation

therapy protocol in combination with prednisolone as treatment

for meningoencephalitis of unknown origin in dogs: a prospective pilot study introducing magnetic resonance spectroscopy as

a monitor tool. Acta Vet. Scand. 57 (4), 1–14.

8.Braund, K.G., 1985. Granulomatous meningoencephalomyelitis. J. Am. Vet. Med. Assoc. 186, 138–141.

9.Carrera, I., Richter, H., Beckmann, K., Meier, D., Dennler,

M., Kircher, P.R., 2016. Evaluation of intracranial neoplasia and

non-infectious meningoencephalitis in dogs by use of short

echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla. Am. J. Vet. Res. 77, 452–462.

10.Carvalho, C.F., Perez, R.B., Chamas, M.C., Maiorka, P.C.,

2012. Transcranial Doppler sonographic findings in granulomatous meningoencephalitis in small breed dogs. Can. Vet. J. 53,

855–859.

11. Cherubini, G.B., Platt, S.R., Anderson, T.J., 2006. Characteristics of magnetic resonance images of granulomatous meningoencephalomyelitis in 11 dogs. Vet. Rec. 159, 504–515.

12.Coates, J.R., Barone, G., Dewey, C.W., Vitale, C.L., Holloway-Azene, N.M., Sessions, J.K., 2007. Procarbazine as adjunctive therapy for treatment of dogs with presumptive antemortem diagnosis of granulomatous meningoencephalomyelitis: 21

cases (1998-2004). J. Vet. Intern. Med. 21, 100–106.

13. Coates, J.R., Jeffery, N.D., 2014. Perspectives on meningoencephalomyelitis of unknown origin. Vet. Clin. North Am.

Small Anim. Pract. 44, 1157–1185. Cooper, J.J., Schatzberg, S.J.,

Vernau, K.M., Summers, B.A., Porter, B.F., Siso, S., Young, B.D.,

Levine, J.M., 2014. Necrotizing meningoencephalitis in atypical

dog breeds: a case series and literature review. J. Vet. Intern.

Med. 28, 198–203.

14.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2016a.

Prognostic factors for 1- week survival in dogs diagnosed with

meningoencephalitis of unknown aetiology. Vet. J. 214, 91–95.

15. Cornelis, I., Volk, H.A., De Decker, S., 2016b. Clinical

presentation, diagnostic findings and long-term survival in large

breed dogs with meningoencephalitis of unknown aetiology.

Vet. Rec. 179 (6), 147.

16.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2017a.

Clinical presentation, diagnostic findings and outcome in dogs

diagnosed with presumptive spinal- only meningoencephalomyelitis of unknown origin. J. Small Anim. Pract. 58, 174–182.

17. Cornelis, I., Van Ham, L., De Decker, S., Kromhout, K.,

Goethals, K., Gielen, I., Bhatti, S., 2017b. Sole prednisolone therapy in canine meningoencephalitis of unknown aetiology. Flemish

Vet. J. 86, 24–29.

18. Cuddon, P., 2002. New treatments for granulomatous

meningoencephalomyelitis. Proceedings of the 20th annual

ACVIM forum, Dallas, USA, pp. 319–321.

19. Cuddon, P., Smith-Maxie, L., 1984. Reticulosis of the

central nervous system in the dog. Compend. Contin. Educ.

Pract. Vet. 6, 23–32.

20.de Stefani, A., De Risio, L., Matiasek, L., Feliu-Pascual,

A.L., 2007. Intravenous cytosine arabinoside in the emergency

treatment of 9 dogs with central nervous system inflammatory

disease of unknown origin. In; Proceedings of the 20th annual

symposium of the ESVN/ECVN, Bern, Switzerland. J. Vet. Intern.

Med. 22 (2), 508. Eom, K.D., Lim, C.Y., Gu, S.H., Kang, B.T., Kim,

Y.B., Jang, D.P., Woo, E.J., Kim, D., Cho, Z. H., Park, H.M., 2008.

Positron emission tomography features of canine necrotizing

meningoencephalitis. Vet. Radiol. Ultrasound 49 (6), 595–599.

21.Feliu-Pascual, A.L., Matiasek, L., de Stefani, A., Beltran,

E., De Risio, L., 2007. Efficacy of mycophenolate mofetil for the

treatment of granulomatous meningoencephalomyelitis: preliminary results. Proceedings of the 20th annual symposium of the

ESVN/ECVN, Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509.

22. Flegel, T., Henke, D., Boetticher, I.C., Aupperle, H., Oechtering, G., Matiasek, K., 2008. Magnetic resonance imaging findings in histologically confirmed pug dog encephalitis. Vet.

Radiol. Ultrasound 49 (5), 419–424.

23.Flegel, T., Boettcher, I.C., Matiasek, K., Oevermann, A.,

Doherr, M.G., Oechtering, G., Henke, D., 2011. Comparison of oral

administration of lomustine and prednisolone or prednisolone

alone as treatment for granulomatous meningoencephalomyelitis or necrotizing encephalitis in dogs. J. Am. Vet. Med. Assoc.

238 (3), 337–345.

24.Flegel, T., Oevermann, A., Oechetering, G., Matiasek, K.,

2012. Diagnostic yield and adverse effects of MRI-guided

free-hand biopsies through a mini-burr hole in dogs with

encephalitis. J. Vet. Intern. Med. 26, 969–976.

25.Gnirs, K., 2006. Ciclosporin treatment of suspected

granulomatous meningoencephalomyelitis in three dogs. J.

Small Anim. Pract. 47 (4), 201–206. Granger, N., Smith, P.M.,

Jeffery, N.D., 2010.

26.Clinical findings and treatment of non-infectious meningoencephalomyelitis in dogs: a systematic review of 457

published cases from 1962 to 2008. Vet. J. 184, 290–297.

27.Greer, K.A., Wong, A.K., Liu, H., Famula, T.R., Pederson,

N.C., Ruhe, A., Wallace, M., Neff, M.W., 2010. Necrotizing meningoencephalitis of Pug dogs associates with dog leucocyte antigen class II and resembles acute variant forms of multiple sclerosis. Tissue Antigens 76 (2), 110–118.

28.Gregory, C.R., Stewart, A., Sturges, B., DeManvelle, T.,

Cannon, A., Ortega, T., Harb, M., Morris, R.E., 1998. Leflunomide

effectively treats naturally occurring immune- mediated and

inflammatory diseases of dogs that are unresponsive to conventional therapy. Transpl. Proc. 30 (8), 4143–4148.

29. Griffin, J.F., Levine, M., Levine, G.J., Fosgate, G.T., 2008.

Meningomyelitis in dogs: a retrospective review of 28 cases

(1999 to 2007). J. Small Anim. Pract. 49, 509– 517.

30. Higgins, R.J., Dickinson, P.J., Kube, S.A., Moore, P.F.,

Couto, S.S., Vernau, K.M., Sturges, B.K., Lecouteur, R.A., 2008.

Necrotizing meningoencephalitis in five Chihuahua dogs. Vet.

Pathol. 45, 336–346.

31.Jung, D.I., Kang, B.T., Park, C., Yoo, J.H., Gu, S.H., Jeon,

H.W., Kim, J.W., Heo, R.Y., Sung, H.J., Eom, K.D., Lee, J.H., Woo,

E.J., Park, H.M., 2007. A comparison of combination therapy

(cyclosporine plus prednisolone) with sole prednisolone therapy

in 7 dogs with necrotizing meningoencephalitis. J. Vet. Med. Sci.

69, 1303–1306.

32.Jung, D.I., Kim, J.W., Park, H.M., 2011. Long-term immunosuppressive therapy with cyclosporine plus prednisolone for

necrotizing meningoencephalitis in a pekingese dog. J. Vet. Med.

Sci. 74, 765–769.

33. Jung, D.I., Lee, H.C., J, H.A., Jung, H.W., Jeon, J.H., Moon,

J.H., Lee, J.H., Kim, N.H., Kang, B.T., Cho, K.W., 2013. Unsuccessful

cyclosporine plus prednisolone therapy for autoimmune meningoencephalitis in three dogs. J. Vet. Med. Sci. 75 (12), 1661–

1665.

34. Kang, B.T., Kim, S.G., Lim, C.Y., Gu, S.H., Jang, D.P., Kim,

Y.B., Kim, D.Y., Woo, E.J., Cho, Z. H., Park, H.M., 2010. Correlation

between fluorodeoxyglucose positron emission tomography and

magnetic resonance imaging findings of non-suppurative meningoencephalitis in 5 dogs. Can. Vet. J. 51, 986–992.

35. Kipar, A., Baumgartner, W., Vogl, C., Gaedke, K., Wellman, M., 1998. Immunohistochemical characterization of inflammatory cells in brains of dogs with granulomatous meningoencephalitis. Vet. Pathol. 35 (1), 43–52.

36.Koblik, P.D., LeCouteur, R.A., Higgins, R.J., Bollen, A.W.,

Vernau, K.M., Kortz, G.D., Ilkiw, J.E., 1999. CT-guided brain biopsy

using a modified pelorus mark III stereotactic system: experience

with 50 dogs. Vet. Radiol. Ultrasound 40 (4), 434–440.

37.Lamb, C.R., Croson, P.J., Capello, R., Cherubini, G.B.,

2005. Results of MR imaging of the head in dogs with inflammatory cerebrospinal fluid. Vet. Radiol. Ultrasound 37, 424–427.

38.Levine, J.M., Fosgate, G.T., Porter, B., Schatzberg, S.J.,

Greer, K., 2008. Epidemiology of necrotizing meningoencephalitis in Pug dogs. J. Vet. Intern. Med. 22 (4), 961– 968.

39. Lowrie, M., Smith, P.M., Garosi, L., 2013. Meningoencephalitis of unknown origin: investigation of prognostic factors

and outcome using a standard treatment protocol. Vet. Rec. 172

(20), 527.

40.Lowrie, M., Thomson, S., Smith, P., Garosi, L., 2016.

Effect of a constant rate infusion of cytosine arabinoside on

mortality in dogs with meningoencephalitis of unknown origin.

Vet. J. 213, 1–5. Menaut, P., Landart, J., Behr, S., Lanore, D.,

Trumel, C., 2008. Treatment of 11 dogs with meningoencephalomyelitis of unknown origin with a combination of prednisolone

and cytosine arabinoside. Vet. Rec. 162 (8), 241–245.

41.Mercier, M., Barnes Heller, H.L., 2015. Efficacy of glucocorticoid monotherapy for treatment of canine meningo-encephalomyelitis of uknown etiology: a prospective study in 16

dogs. Vet. Med. Sci. 1, 16–22.

42.Munana, K.R., Luttgen, P.J., 1998. Prognostic factors for

dogs with granulomatous meningoencephalomyelitis: 42 cases

(1982-1996). J. Am. Vet. Med. Assoc. 212, 1902–1906.

43.Oliphant, B.J., Barnes Heller, H.L., White, J.M., 2017. Retrospective study evaluating assocations between midine shift

on magnetic resonance imaging and survival in dogs diagnosed

with meningoencephalitis of unknown etiology. Vet. Radiol.

Ultrasound 58 (1), 38–43.

44.Pakozdy, A., Leschnik, M., Kneissl, S., Gumpenberger, M.,

Gruber, A., Tichy, A., Thalhammer, J.G., 2009. Improved survival

time in dogs with suspected GME treated with ciclosporine. Vet.

Rec. 164, 89–91.

45.Russo, M.E., 1979. Primary reticulosis of the central nervous system in dogs. J. Am. Vet. Med. Assoc. 174, 492–500.

46.Schatzberg, S.J., Haley, N.J., Barr, S.C., de Lahunta, A.,

Sharp, N.J.H., 2005. Polymerase chain reaction screening for

DNA viruses in paraffin-embedded brains from dogs with necrotizing meningoencephalitis, necrotizing leucoencephalitis and

granulomatous meningoencephalitis. J. Vet. Intern. Med. 19 (4),

553–559.

47.Sisson, A.F., LeCouteur, R.A., Dow, S.W., Gilette, E.L.,

1989. Radiation therapy of granulomatous meningoencephalomyelitis of dogs. ACVIM forum proceedings. J. Vet. Intern. Med. 3

(2), 119.

48.Smith, P.M., Stalin, C.E., Shaw, D., Granger, N., Jeffery,

N.D., 2009. Comparison of two regimens for the treatment of

meningoencephalomyelitis of unknown etiology. J. Vet. Intern.

Med. 23, 520–526.

49.Sorjonen, D.C., 1990. Clinical and histopathological features of granulomatous meningoencephalomyelitis in dogs. J.

Am. Anim. Hosp. Assoc. 26, 141–147.

50. Talarico, L.R., Schatzberg, S.J., 2010. Idiopathic granulomatous and necrotising inflammatory disorders of the canine

central nervous system: a review and future perspectives. J.

Small Anim. Pract. 51, 138–149.

51.Thomas, J.B., Eger, C., 1989. Granulomatous meningoencephalomyelitis in 21 dogs. J. Small Anim. Pract. 30, 287–293.

52.Tipold, A., 1995. Diagnosis of inflammatory and infectious diseases of the central nervous system in dogs: a retrospective study. J. Vet. Intern. Med. 9, 304–314.

53.Uchida, K., Park, E., Tsuboi, M., Chambers, J.K., Nakayama, H., 2016. Pathological and immunological features of canine

necrotising meningoencephalitis and granulomatous meningoencephalitis. Vet. J. 213, 72–77.

54.Uriarte, J.L., Thibaud, K., Gnirs, S., Blot, S., 2007. Lomustine treatment in noninfectious meningoencephalitis in 8 dogs,

Proceedings of the 20th annual symposium of the ESVN/ECVN,

Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509. von Praun, F.,

Matiasek, K., Grevel, V., Alef, M., Flegel, T., 2006. Magnetic resonance imaging and pathologic findings associated with necrotizing encephalitis in two Yorkshire terriers. Vet. Radiol. Ultrasound 47, 260–264.

55.Wolff, C.A., Holmes, S.P., Young, B.D., Chen, A.V., Kent,

M., Platt, S.R., Savage, M.Y., Schatzberg, S.J., Fosgate, G.T., Levine,

J.M., 2012. Magnetic resonance imaging for the differentiation of

neoplastic, inflammatory and cerebrovascular brain disease in

dogs. J. Vet. Intern. Med. 26, 589–597.

56.Wong, M.A., Hopkings, A.L., Meeks, J.C., Clarke, J.D.,

2010. Evaluation of treatment with a combination of azathioprine and prednisone in dogs with meningoencephalomyelitis of

undetermined etiology: 40 cases (2000-2007). J. Am. Vet. Med.

Assoc. 237 (8), 929–935.

57.Young, B., Levine, J.L., Fosgate, A., de Lahunta, A.,

Flegel, T., Matiasek, K., Miller, A., Silver, G., Sharp, N., Greer, K.,

Schatzberg, S.J., 2009. Magnetic resonance imaging characteristics of necrotizing meningoencephalitis in pug dogs. J. Vet.

Intern. Med. 23 (3), 527–535.

58.Zarfoss, M., Schatzberg, S., Venator, K., Cutter-Schatzberg, K., Cuddon, P., Pintar, J., Weinkle, T., Scarlett, J.,

deLahunta, A., 2006. Combined cytosine arabinoside and prednisone therapy for meningoencephalitis of unknown aetiology in

10 dogs. J. Small Anim. Pract. 47, 588–595.

第128页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 126 -

参考文献:

1.Adamo, F.P., O’ Brien, R.T., 2004. Use of cyclosporine

to treat granulomatous meningoencephalitis in three dogs.

J. Am. Vet. Med. Assoc. 225, 1211–1216.

2.Adamo, P.F., Rylander, H., Adams, W.M., 2007. Ciclosporin use in multi-drug therapy for meningoencephalomyelitis of unknown aetiology in dogs. J. Small Anim. Pract. 48,

486–496.

3.Bailey, C.S., Higgins, R.J., 1986. Characteristics of

cerebrospinal fluid associated with canine granulomatous

meningoencephalomyelitis: a retrospective study. J. Am. Vet.

Med. Assoc. 188, 418–421.

4.Barber, R.M., Porter, B.F., Li, Q., May, M., Clairborne, M.K.,

Allison, A.B., Howerth, E.W., Butler, A., Wei, S., Levine, J.M., Brown,

D.R., Schatzberg, S.J., 2012. Broadly reactive polymerase chain

reaction for pathogen detection in canine granulomatous meningoencephalomyelitis and necrotizing meningoencephalitis. J.

Vet. Intern. Med. 26 (4), 962–968.

5.Barnoon, I., Shamir, M.H., Aroch, I., Bdolah-Abram, T.,

Srugo, I., Konstantin, L., Chai, O., 2016. Retrospective evaluation

of combined mycophenolate mofetil and prednisone treatment

for meningoencephalomyelitis of unknown etiology in dogs: 25

cases (2005-2011). J. Vet. Emerg. Crit. Care 26 (1), 116–124.

6.Bateman, S.W., Parent, J.M., 1999. Clinical findings, treatment and outcome of dogs with status epilepticus or cluster

seizures: 156 cases (1990–1995). J. Am. Vet. Med. Assoc. 215,

1463–1468.

7. Beckmann, K., Carrera, I., Steffen, F., Golini, L., Kircher,

P.R., Schneider, U., Bley, C.R., 2015. A newly designed radiation

therapy protocol in combination with prednisolone as treatment

for meningoencephalitis of unknown origin in dogs: a prospective pilot study introducing magnetic resonance spectroscopy as

a monitor tool. Acta Vet. Scand. 57 (4), 1–14.

8.Braund, K.G., 1985. Granulomatous meningoencephalomyelitis. J. Am. Vet. Med. Assoc. 186, 138–141.

9.Carrera, I., Richter, H., Beckmann, K., Meier, D., Dennler,

M., Kircher, P.R., 2016. Evaluation of intracranial neoplasia and

non-infectious meningoencephalitis in dogs by use of short

echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla. Am. J. Vet. Res. 77, 452–462.

10.Carvalho, C.F., Perez, R.B., Chamas, M.C., Maiorka, P.C.,

2012. Transcranial Doppler sonographic findings in granulomatous meningoencephalitis in small breed dogs. Can. Vet. J. 53,

855–859.

11. Cherubini, G.B., Platt, S.R., Anderson, T.J., 2006. Characteristics of magnetic resonance images of granulomatous meningoencephalomyelitis in 11 dogs. Vet. Rec. 159, 504–515.

12.Coates, J.R., Barone, G., Dewey, C.W., Vitale, C.L., Holloway-Azene, N.M., Sessions, J.K., 2007. Procarbazine as adjunctive therapy for treatment of dogs with presumptive antemortem diagnosis of granulomatous meningoencephalomyelitis: 21

cases (1998-2004). J. Vet. Intern. Med. 21, 100–106.

13. Coates, J.R., Jeffery, N.D., 2014. Perspectives on meningoencephalomyelitis of unknown origin. Vet. Clin. North Am.

Small Anim. Pract. 44, 1157–1185. Cooper, J.J., Schatzberg, S.J.,

Vernau, K.M., Summers, B.A., Porter, B.F., Siso, S., Young, B.D.,

Levine, J.M., 2014. Necrotizing meningoencephalitis in atypical

dog breeds: a case series and literature review. J. Vet. Intern.

Med. 28, 198–203.

14.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2016a.

Prognostic factors for 1- week survival in dogs diagnosed with

meningoencephalitis of unknown aetiology. Vet. J. 214, 91–95.

15. Cornelis, I., Volk, H.A., De Decker, S., 2016b. Clinical

presentation, diagnostic findings and long-term survival in large

breed dogs with meningoencephalitis of unknown aetiology.

Vet. Rec. 179 (6), 147.

16.Cornelis, I., Volk, H.A., Van Ham, L., De Decker, S., 2017a.

Clinical presentation, diagnostic findings and outcome in dogs

diagnosed with presumptive spinal- only meningoencephalomyelitis of unknown origin. J. Small Anim. Pract. 58, 174–182.

17. Cornelis, I., Van Ham, L., De Decker, S., Kromhout, K.,

Goethals, K., Gielen, I., Bhatti, S., 2017b. Sole prednisolone therapy in canine meningoencephalitis of unknown aetiology. Flemish

Vet. J. 86, 24–29.

18. Cuddon, P., 2002. New treatments for granulomatous

meningoencephalomyelitis. Proceedings of the 20th annual

ACVIM forum, Dallas, USA, pp. 319–321.

19. Cuddon, P., Smith-Maxie, L., 1984. Reticulosis of the

central nervous system in the dog. Compend. Contin. Educ.

Pract. Vet. 6, 23–32.

20.de Stefani, A., De Risio, L., Matiasek, L., Feliu-Pascual,

A.L., 2007. Intravenous cytosine arabinoside in the emergency

treatment of 9 dogs with central nervous system inflammatory

disease of unknown origin. In; Proceedings of the 20th annual

symposium of the ESVN/ECVN, Bern, Switzerland. J. Vet. Intern.

Med. 22 (2), 508. Eom, K.D., Lim, C.Y., Gu, S.H., Kang, B.T., Kim,

Y.B., Jang, D.P., Woo, E.J., Kim, D., Cho, Z. H., Park, H.M., 2008.

Positron emission tomography features of canine necrotizing

meningoencephalitis. Vet. Radiol. Ultrasound 49 (6), 595–599.

21.Feliu-Pascual, A.L., Matiasek, L., de Stefani, A., Beltran,

E., De Risio, L., 2007. Efficacy of mycophenolate mofetil for the

treatment of granulomatous meningoencephalomyelitis: preliminary results. Proceedings of the 20th annual symposium of the

ESVN/ECVN, Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509.

22. Flegel, T., Henke, D., Boetticher, I.C., Aupperle, H., Oechtering, G., Matiasek, K., 2008. Magnetic resonance imaging findings in histologically confirmed pug dog encephalitis. Vet.

Radiol. Ultrasound 49 (5), 419–424.

23.Flegel, T., Boettcher, I.C., Matiasek, K., Oevermann, A.,

Doherr, M.G., Oechtering, G., Henke, D., 2011. Comparison of oral

administration of lomustine and prednisolone or prednisolone

alone as treatment for granulomatous meningoencephalomyelitis or necrotizing encephalitis in dogs. J. Am. Vet. Med. Assoc.

238 (3), 337–345.

24.Flegel, T., Oevermann, A., Oechetering, G., Matiasek, K.,

2012. Diagnostic yield and adverse effects of MRI-guided

free-hand biopsies through a mini-burr hole in dogs with

encephalitis. J. Vet. Intern. Med. 26, 969–976.

25.Gnirs, K., 2006. Ciclosporin treatment of suspected

granulomatous meningoencephalomyelitis in three dogs. J.

Small Anim. Pract. 47 (4), 201–206. Granger, N., Smith, P.M.,

Jeffery, N.D., 2010.

26.Clinical findings and treatment of non-infectious meningoencephalomyelitis in dogs: a systematic review of 457

published cases from 1962 to 2008. Vet. J. 184, 290–297.

27.Greer, K.A., Wong, A.K., Liu, H., Famula, T.R., Pederson,

N.C., Ruhe, A., Wallace, M., Neff, M.W., 2010. Necrotizing meningoencephalitis of Pug dogs associates with dog leucocyte antigen class II and resembles acute variant forms of multiple sclerosis. Tissue Antigens 76 (2), 110–118.

28.Gregory, C.R., Stewart, A., Sturges, B., DeManvelle, T.,

Cannon, A., Ortega, T., Harb, M., Morris, R.E., 1998. Leflunomide

effectively treats naturally occurring immune- mediated and

inflammatory diseases of dogs that are unresponsive to conventional therapy. Transpl. Proc. 30 (8), 4143–4148.

29. Griffin, J.F., Levine, M., Levine, G.J., Fosgate, G.T., 2008.

Meningomyelitis in dogs: a retrospective review of 28 cases

(1999 to 2007). J. Small Anim. Pract. 49, 509– 517.

30. Higgins, R.J., Dickinson, P.J., Kube, S.A., Moore, P.F.,

Couto, S.S., Vernau, K.M., Sturges, B.K., Lecouteur, R.A., 2008.

Necrotizing meningoencephalitis in five Chihuahua dogs. Vet.

Pathol. 45, 336–346.

31.Jung, D.I., Kang, B.T., Park, C., Yoo, J.H., Gu, S.H., Jeon,

H.W., Kim, J.W., Heo, R.Y., Sung, H.J., Eom, K.D., Lee, J.H., Woo,

E.J., Park, H.M., 2007. A comparison of combination therapy

(cyclosporine plus prednisolone) with sole prednisolone therapy

in 7 dogs with necrotizing meningoencephalitis. J. Vet. Med. Sci.

69, 1303–1306.

32.Jung, D.I., Kim, J.W., Park, H.M., 2011. Long-term immunosuppressive therapy with cyclosporine plus prednisolone for

necrotizing meningoencephalitis in a pekingese dog. J. Vet. Med.

Sci. 74, 765–769.

33. Jung, D.I., Lee, H.C., J, H.A., Jung, H.W., Jeon, J.H., Moon,

J.H., Lee, J.H., Kim, N.H., Kang, B.T., Cho, K.W., 2013. Unsuccessful

cyclosporine plus prednisolone therapy for autoimmune meningoencephalitis in three dogs. J. Vet. Med. Sci. 75 (12), 1661–

1665.

34. Kang, B.T., Kim, S.G., Lim, C.Y., Gu, S.H., Jang, D.P., Kim,

Y.B., Kim, D.Y., Woo, E.J., Cho, Z. H., Park, H.M., 2010. Correlation

between fluorodeoxyglucose positron emission tomography and

magnetic resonance imaging findings of non-suppurative meningoencephalitis in 5 dogs. Can. Vet. J. 51, 986–992.

35. Kipar, A., Baumgartner, W., Vogl, C., Gaedke, K., Wellman, M., 1998. Immunohistochemical characterization of inflammatory cells in brains of dogs with granulomatous meningoencephalitis. Vet. Pathol. 35 (1), 43–52.

36.Koblik, P.D., LeCouteur, R.A., Higgins, R.J., Bollen, A.W.,

Vernau, K.M., Kortz, G.D., Ilkiw, J.E., 1999. CT-guided brain biopsy

using a modified pelorus mark III stereotactic system: experience

with 50 dogs. Vet. Radiol. Ultrasound 40 (4), 434–440.

37.Lamb, C.R., Croson, P.J., Capello, R., Cherubini, G.B.,

2005. Results of MR imaging of the head in dogs with inflammatory cerebrospinal fluid. Vet. Radiol. Ultrasound 37, 424–427.

38.Levine, J.M., Fosgate, G.T., Porter, B., Schatzberg, S.J.,

Greer, K., 2008. Epidemiology of necrotizing meningoencephalitis in Pug dogs. J. Vet. Intern. Med. 22 (4), 961– 968.

39. Lowrie, M., Smith, P.M., Garosi, L., 2013. Meningoencephalitis of unknown origin: investigation of prognostic factors

and outcome using a standard treatment protocol. Vet. Rec. 172

(20), 527.

40.Lowrie, M., Thomson, S., Smith, P., Garosi, L., 2016.

Effect of a constant rate infusion of cytosine arabinoside on

mortality in dogs with meningoencephalitis of unknown origin.

Vet. J. 213, 1–5. Menaut, P., Landart, J., Behr, S., Lanore, D.,

Trumel, C., 2008. Treatment of 11 dogs with meningoencephalomyelitis of unknown origin with a combination of prednisolone

and cytosine arabinoside. Vet. Rec. 162 (8), 241–245.

41.Mercier, M., Barnes Heller, H.L., 2015. Efficacy of glucocorticoid monotherapy for treatment of canine meningo-encephalomyelitis of uknown etiology: a prospective study in 16

dogs. Vet. Med. Sci. 1, 16–22.

42.Munana, K.R., Luttgen, P.J., 1998. Prognostic factors for

dogs with granulomatous meningoencephalomyelitis: 42 cases

(1982-1996). J. Am. Vet. Med. Assoc. 212, 1902–1906.

43.Oliphant, B.J., Barnes Heller, H.L., White, J.M., 2017. Retrospective study evaluating assocations between midine shift

on magnetic resonance imaging and survival in dogs diagnosed

with meningoencephalitis of unknown etiology. Vet. Radiol.

Ultrasound 58 (1), 38–43.

44.Pakozdy, A., Leschnik, M., Kneissl, S., Gumpenberger, M.,

Gruber, A., Tichy, A., Thalhammer, J.G., 2009. Improved survival

time in dogs with suspected GME treated with ciclosporine. Vet.

Rec. 164, 89–91.

45.Russo, M.E., 1979. Primary reticulosis of the central nervous system in dogs. J. Am. Vet. Med. Assoc. 174, 492–500.

46.Schatzberg, S.J., Haley, N.J., Barr, S.C., de Lahunta, A.,

Sharp, N.J.H., 2005. Polymerase chain reaction screening for

DNA viruses in paraffin-embedded brains from dogs with necrotizing meningoencephalitis, necrotizing leucoencephalitis and

granulomatous meningoencephalitis. J. Vet. Intern. Med. 19 (4),

553–559.

47.Sisson, A.F., LeCouteur, R.A., Dow, S.W., Gilette, E.L.,

1989. Radiation therapy of granulomatous meningoencephalomyelitis of dogs. ACVIM forum proceedings. J. Vet. Intern. Med. 3

(2), 119.

48.Smith, P.M., Stalin, C.E., Shaw, D., Granger, N., Jeffery,

N.D., 2009. Comparison of two regimens for the treatment of

meningoencephalomyelitis of unknown etiology. J. Vet. Intern.

Med. 23, 520–526.

49.Sorjonen, D.C., 1990. Clinical and histopathological features of granulomatous meningoencephalomyelitis in dogs. J.

Am. Anim. Hosp. Assoc. 26, 141–147.

50. Talarico, L.R., Schatzberg, S.J., 2010. Idiopathic granulomatous and necrotising inflammatory disorders of the canine

central nervous system: a review and future perspectives. J.

Small Anim. Pract. 51, 138–149.

51.Thomas, J.B., Eger, C., 1989. Granulomatous meningoencephalomyelitis in 21 dogs. J. Small Anim. Pract. 30, 287–293.

52.Tipold, A., 1995. Diagnosis of inflammatory and infectious diseases of the central nervous system in dogs: a retrospective study. J. Vet. Intern. Med. 9, 304–314.

53.Uchida, K., Park, E., Tsuboi, M., Chambers, J.K., Nakayama, H., 2016. Pathological and immunological features of canine

necrotising meningoencephalitis and granulomatous meningoencephalitis. Vet. J. 213, 72–77.

54.Uriarte, J.L., Thibaud, K., Gnirs, S., Blot, S., 2007. Lomustine treatment in noninfectious meningoencephalitis in 8 dogs,

Proceedings of the 20th annual symposium of the ESVN/ECVN,

Bern, Switzerland. J. Vet. Intern. Med. 22 (2), 509. von Praun, F.,

Matiasek, K., Grevel, V., Alef, M., Flegel, T., 2006. Magnetic resonance imaging and pathologic findings associated with necrotizing encephalitis in two Yorkshire terriers. Vet. Radiol. Ultrasound 47, 260–264.

55.Wolff, C.A., Holmes, S.P., Young, B.D., Chen, A.V., Kent,

M., Platt, S.R., Savage, M.Y., Schatzberg, S.J., Fosgate, G.T., Levine,

J.M., 2012. Magnetic resonance imaging for the differentiation of

neoplastic, inflammatory and cerebrovascular brain disease in

dogs. J. Vet. Intern. Med. 26, 589–597.

56.Wong, M.A., Hopkings, A.L., Meeks, J.C., Clarke, J.D.,

2010. Evaluation of treatment with a combination of azathioprine and prednisone in dogs with meningoencephalomyelitis of

undetermined etiology: 40 cases (2000-2007). J. Am. Vet. Med.

Assoc. 237 (8), 929–935.

57.Young, B., Levine, J.L., Fosgate, A., de Lahunta, A.,

Flegel, T., Matiasek, K., Miller, A., Silver, G., Sharp, N., Greer, K.,

Schatzberg, S.J., 2009. Magnetic resonance imaging characteristics of necrotizing meningoencephalitis in pug dogs. J. Vet.

Intern. Med. 23 (3), 527–535.

58.Zarfoss, M., Schatzberg, S., Venator, K., Cutter-Schatzberg, K., Cuddon, P., Pintar, J., Weinkle, T., Scarlett, J.,

deLahunta, A., 2006. Combined cytosine arabinoside and prednisone therapy for meningoencephalitis of unknown aetiology in

10 dogs. J. Small Anim. Pract. 47, 588–595.

第129页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 127 -

李彦林

南京农业大学临床兽医系 硕士

南京艾贝尔双龙中心医院 院长

荣获2021年江苏省优秀动物医生

新瑞鹏集团神经专科优秀人才

作者介绍

寄语

敬畏生命,不断学习,希望能在运用所学所能,

在治疗,在执刀冰冷时,守执业初始之热情予生命和

医疗以温暖。

神经内科、超声诊断

擅长领域

中文核心期刊发表:

《磁共振成像(MRI)在犬颅脑损伤诊断中的应用》

《犬非感染性脑炎的磁共振影像观察》

《增强磁共振成像在犬细菌性脑膜炎诊断中的应用》

楼凌森

毕业于中国农业大学动物医学

杭州美联众合动物医院博大转诊中心 技术院长

新瑞鹏集团百强-神经科/影像科

中国畜牧兽医学会会员/影像专科医师

冠能兽医俱乐部 特聘讲师

迈瑞小动物超声 特聘讲师

作者介绍

寄语

劈破旁门,方见明月如洗。

第130页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

前言

材料与方法

病例分析:三例海绵窦综合征的诊断分析

Case report:Clinical approach of Cavernous Sinus Syndrome in 3 Dogs

作者

李彦林1

(南京艾贝尔双龙动物医院)

史超颖2

(南京艾贝尔动物医学中心)、吴俊杰3

(南京艾贝尔动物医学中心)

摘要:

海绵窦综合征 (CSS) 是颅穹窿底部穿过海绵状窦的多条脑神经 (CN) 出现缺陷引起的一类神经症候群

统称,常见的脑神经异常包括 CN III( 动眼神经 ),CN IV( 滑车神经 ),CN VI( 外展神经 ),CN V 的前两个分支 (

三叉神经 )。根据病动物体格检查、神经学检查和实验室检查结果初步进行诊断,然后采用联影公司 uMR560

1.5T 磁共振扫描仪进行影像诊断,两例病例在 MRI 影像下均发现海绵窦有肿块病变。本论文总结 2 例犬,1

例猫海绵状窦综合征 (CSS) 的主诉、神经学表现、诊断和结果。目的是让临床医生熟悉常见的临床体征、诊断

测试、临床结果,并回顾 CSS 相关的神经学应用。

关键词:海绵窦综合征;磁共振影像;诊断;

临床病例

在2021年1月至2021年11月中接到的3例由于脑

神经异常症状就诊的病例,通过磁共振影像检查确

诊海绵窦区域病变的病例,其中有2例犬,1例猫。

病例也配合进行了全血计数、生化分析、尿液分

析、胸片、腹部超声、脑脊液分析等辅助诊断。

主要仪器设备

uMR560 1.5T磁共振扫描仪、柔性线圈(大、小)

(联影医疗);麻醉机(MATRX);血细胞分析仪(爱德士

ProCyte Dx™);生化分析仪爱德士(Catalyst DxTM);

内分泌及快速检测试剂分析仪(爱德士 SNAPshot Dx

™);动物电解质与血气分析仪(雅培EC8+)。

- 128 -

海绵窦(Cavernous Sinus,CS)是一个成对的静脉

窦,解剖位置在蝶窦上方垂体的两侧,从眶裂延伸至

岩枕管,其中脑神经从海绵窦边缘穿行。海绵状窦综

合征(Cavernous Sinus Syndrome CSS)是指海绵窦区

域病变后,引起一对以上的脑神经III、IV、V和VI缺陷

所表现的异常症候群[1-3],因海绵窦靠近多对脑神经

和垂体,通常伴随有单一或多种症状如失明,面神经

反射异常,共济失调,疼痛,无力,嗜睡,上睑下垂,眼

肿胀,多饮,癫痫,面肌萎缩,吞咽困难,头倾斜等。神

经体征包括眼肌麻痹,瞳孔光反应减弱/消失,瞳孔散

失,角膜感觉减弱/消失,眼睛的交感神经也通过CS

区域,因此,霍纳氏综合征可能伴有与海绵窦综合征

一致的其他临床症状[4]。

CSS与多种疾病过程相关。在一项人类医学研

究中[5],肿瘤因素约占该类病例发病的70%,其他原

因包括感染性,非感染性炎症和创伤性损伤。在动

物中只有零星的CSS个例被报道[6-7]。组织病理学确

诊的肿瘤种类有淋巴瘤、甲状腺腺癌、神经内分泌

癌、脑膜瘤、软骨肉瘤和原始神经外胚层肿瘤。其

他报道的狗和猫的病因包括:传染性和非传染性炎症

性疾病、多发性软骨外生、外伤和血管病变、海绵

窦瘘[8-10]。与狗相比,猫的传染性病因报道更普遍,

包括:猫传染性腹膜炎、新型隐球菌和弓形虫[11]。

本病例系列的目的是确定海绵状窦综合征犬和

猫的常见主诉、临床表现、诊断和结果。给临床医

生诊断该类疾病提供理论依据。

第131页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

结果

病例基本信息及临床检查

病例1,11岁雌性雪纳瑞,体重8Kg,已绝育,

主诉三个月前开始出现多饮多尿的情况,最近一周

出现明显的虚弱嗜睡,行走共济失调的情况,双侧

瞳孔大小不一致,上眼睑下垂。神经学检查可见双

侧瞳孔对光反射减弱。

病例2,8岁雄性混血犬,体重6.2Kg,未去势,

两天前突发癫痫,持续发作10分钟后恢复,之后精

神沉郁,出现走路碰到障碍的情况,发现右侧瞳孔

散大。神经学检查发现恐吓反射消失,右侧瞳孔对

光反射消失,左侧瞳孔对光反射减弱。

病例3,13岁雄性田园猫,体重5.3Kg,已去

势,半年前因为有多饮多尿情况疑似糖尿病一直未

曾检查用药,最近发现眼睛瞳孔大小不对称,走路

不稳,便秘就诊。神经学检查双侧瞳孔对光反射减

弱,左侧面神经麻痹,舌面有溃疡。

实验室检查结果

病例1:中性粒细胞数目轻微升高12.39K/μL(正

常值范围3.62-12.3)生化检查结果碱性磷酸酶升高

273U/L(正常范围23-212),血清总甲状腺素(TT4)

6nmol/L(正常值13-51),送检T4:0.63μg/dl、TSH:

0.71ng/ml、Anti-Tg:64.1U/ml,提示甲状腺机能减

退,脑脊液(CSF)检测未见明显异常。

检查项目

Check the project

检查结果

Check the result

参考范围

Reference

检查项目

Check the project

检查结果

Check the result

参考范围

Reference

红细胞计数

RBC

6.21 5.65-8.87 中性粒细胞

NEU(K/ L) 13.41↑ 2.95-11.64

红细胞压积PCV 402% 37.3-61.7 淋巴细胞

LYM(K/ L) 4.5 1.05-5.10

血红蛋白HB(g/dL) 13.1 13.1-20.5 单核细胞

MONO(K/ L) 1.33↑ 0.16-1.12

平均红细胞体积

MCV(fL) 62.4 61.6-73.5 嗜酸性粒细胞

EOS(K/ L) 0.03↓ 0.06-1.23

平均血红蛋白量 MCH

(pg) 22 21.2-25.9 嗜碱性粒细胞

BASO(K/ L) 0.08 0.00-0.10

平均血红蛋白浓度

MCHC(g/dL) 32.3 32.0-37.9 血小板

PLT(K/ L) 228 148-484

红细胞分布宽度 RDW 16.40% 13.6-21.7 平均血小板体积

MPV(fL) 9.8 8.7-13.2

网织红细胞

RC(K/ L) 18 10.0-110.0 血小板分布宽度

PDW(fL) 12 9.1-19.4

白细胞WBC(K/ L) 18.24↑ 5.05-16.76 血小板压积PCT 0.32% 0.14-0.46

(M/μL) μ

μ

μ

μ

μ

μ

μ

μ

病例2:血液学检查结果未见明显异常。CSF未见

明显异常。

病例3:实验室检查见表1-1,1-2。白细胞18.24

K/μL、中性粒细胞13.41K/μL、单核细胞结果1.33 K/μ

L高于正常值,生化检测提示高血糖,CSF可见轻微的

单核细胞增多。在2021年1月至2021年11月中接到的3

例由于脑神经异常症状就诊的病例,通过磁共振影像

检查确诊海绵窦区域病变的病例,其中有2例犬,1例

猫。病例也配合进行了全血计数、生化分析、尿液分

析、胸片、腹部超声、脑脊液分析等辅助诊断。

表 1-1、1-2 两项实验室检查提示炎性病变及血

糖升高。

磁共振扫描结果

使用1.5T磁共振仪对三个病例均进行了扫描。

病例1的磁共振检查结果如图1,在T1序列下海绵

窦区域等信号病灶,在T2下高信号提示病变周围伴

随细胞毒性水肿在FLAIR序列下无法被抑制,病灶在

T1增强序列下呈现高信号。

病例2的磁共振检查结果如图2,病灶在T1序列下

呈现等偏高信号,T2序列下呈现等信号,造影增强下

呈现高信号。DWI序列、SWI序列均未见异常信号。

病例3的磁共振检查结果如图3,病灶在T1序列

下呈等信号、T2序列下均呈现低信号,造影增强下呈

现高信号。

表1-1:病例3血细胞检测报告

- 129 -

第132页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

表1-2:病例3生化检测

A

A

图1:病例1磁共振检查图像

A:Gd-T1WI横断面,B:Gd-T1WI冠状面,在T1造影增强下颅底垂体部位出现局灶性病灶(箭头)

病灶侵占了整个海绵窦,侵占了丘脑及部分大脑颞叶。

图2:病例2磁共振检查图像

A:T2WI矢状面,B:Gd-T1WI横断面,在T2下海绵窦区域呈现等信号的病灶,在T1增强序列呈现高信号

检查项目

Check the project

检查结果

Check the result

参考范围

Reference

检查项目

Check the project

检查结果

Check the result

参考范围

Reference

血糖

GLU(mmol/L) 12.11↑ 3.95-8.85 白蛋白ALB(g/L) 33 23-39

血尿素氮

BUN(mmol/L) 11.4 5.1-12.9 球蛋白 (g/L) 52↑ 28-51

肌酐

CREA( mol/L) 144 71-212 白/球比A/G 0.6

血尿素氮/肌酐比

BUN/CREA

20 丙氨酸转氨酶

ALT(U/L) 31 10-125

总蛋白TP(g/L) 85 52-89 碱性磷酸酶ALP(U/L) 100 23-212

GLB

μ

B

B

- 130 -

第133页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

图3:病例3磁共振检查图像

A:Gd-T1WI横断面,B:Gd-T1WI冠状面,在T1造影增强下颅底垂体部位出现局灶性病灶(箭头),病灶增大侵占了整个海绵窦。

诊断分析

三个动物均表现了一定程度的精神沉郁,出现了

指示海绵窦综合征的神经症状包括瞳孔对光反射出

现异常,双侧瞳孔大小不对称,均出现了一定程度的

散瞳症状,其中有两个动物出现了共济失调的表现,

一个动物出现癫痫的症状,其中有两例动物表现了出

了多饮多尿的症状,一例有表现便秘的症状。实验室

检查,有两例动物在血细胞计数结果上表现出中性粒

细胞数目增多的情况,其中一例在脑脊液检查中也出

现了免疫细胞增多的情况,有一例动物实验室检查提

示甲状腺机能减退,有一例动物提示血糖升高,有一

例动物血液学检查未见明显异常。在磁共振影像学

检查中,三例动物均变现了在海绵窦区域的团块占位

性病变,并在造影增强中显示高信号,提示了肿瘤性

的病变引起。

在国外相关文献报道中[12]表明海绵窦综合征

CSS在实践中较为常见,在国内临床病例研究中该类

疾病很少被提及。在这篇文章中我们给出了2021年中

临床诊断中遇到被确诊的三例病例,汇总了临床体

征、实验室检查及影像学检查结果,与之前报道的结

果相吻合。在任何病人中发现瞳孔不等宽应立即进行

全面的眼科和神经学评估。评估眼肌麻痹,瞳孔不对

称获得海绵窦综合征诊断的关键。患眼应以对侧眼作

为对照(当为单侧眼时),仔细评估其背侧、腹侧、外

A B

讨论

侧和内侧方向的运动。瞳孔对光反射也可以用来作为

诊断的依据。本研究将瘤变确定为CSS最常见的潜在

病因,这与以往的研究结果一致[8、11]。

本研究中所涉及到的3例病例有2例主人在得知

诊断结果后选择安乐,有一例目前仍在对症支持治疗

中,因此对于CSS的治疗及预后无法给出指示性结

果。在之前国外报道的该类疾病的回顾性研究中[12],

作者回访了13例患者超过47个月或直到安乐死,报道

中放射治疗的中位存活时间有1035天,抗炎类固醇治

疗的中位存活时间为360天,无任何治疗的存活时间

仅有14天。研究中普遍认为接受治疗的狗的生存时间

更长可能是由于使用了放射疗法。

在目前的研究中,病例以相同的频率出现在眼科

和神经内科诊断中,所以所有的临床医生应该知道该

综合征及其常见的临床表现。这两个专业的临床医生

应该始终进行完整的神经眼科检查,包括眼动评估和

角膜不等差的角膜感觉,并把CSS列入鉴别诊断列

表。综上所述,犬猫海绵状窦综合征通常是海绵状窦

内肿瘤过程的结果,通过对该综合征的认识,并对任

何散瞳症患者进行全面的眼科和神经系统检查,病

例可能在疾病进展中更早被发现,预后也可能改善。

- 131-

第134页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

参考文献:

1.Van Overheeke JJ, Jansen JJ, Tulleken CA. The cavernous

sinus syndrome[J]. Clin Neurol Neurosurg 1988, 90: 311 -319.

2.Bilyk JR, Dallow RL, Ojerman RG, et al. Management of

lesions at the cranio-orbital junction. Int Ophthop Clin 1992, 32:

73-93.

3.Fujiwara S, Fujino H, Nisho S, Fuki M. Aspergillosis of the

sphenoid sinus with cavernous sinus syndrome. Neuroradiology

1989, 31: 443.

4.Dewey, C.W. 2008. Practical Guide to Canine and Feline

Neurology. 2nd edition. Iowa: WileyBlackwell

5.Thomas JE, Yoss RE. The parasellar syndrome: Problems

in determining the etiology. Mayo Clin Proc 1970, 45: 617-623.

6.Griffiths IR, Lee R. Ophthalmoplegia in the dog and use

of cavernous sinus venography as an aid in diagnosis. J Am Vet

Radiol Soc 1979; 12�22-28.

7.Lewis GT, Blanchard GL, Trapp AL, Decamp CE. Ophthalmoplegia caused by thyroid adenocarcinoma invasion of the

cavemous sinuses in the dog. J Am Anim Hosp Assoc 1984, 20:

805-812.

8.Rossmeisl, J.H., Higgins, M.A., Inzana, K.D., Herring, I.P.

and Grant, D.C. 2005. Bilateral cavernous sinus syndrome in

dogs: 6 cases (1000- 2004). J. Am. Vet. Med. Assoc. 226,

1105-1111.

9.Guevar, J., Gutierrez-Quintana, R., Peplinski, G., Helm, J.R.

and Penderis, J. 2014. Cavernous sinus syndrome secondary to

intracranial lymphoma in a cat. J. Feline Med. Surg. 16, 513-516.

10.Perazzi, A., Bernardini, M., Mandara, M., De Benedictis,

G.M., De Strobel, F. and Zotti, A. 2013. Cavernous sinus syndrome

due to osteochondromatosis in a cat. J. Feline Med. Surg. 15(12),

1132-1136.

11.Theisen, S.K., Podell, M., Schneider, T., Wilkie, D.A. and

Fenner, W.R. 1996. A Retrospective study of cavernous sinus

syndrome in 4 dogs and 8 cats. J. Vet. Intern. Med. 10, 65-71.

12.Aslynn M. Jones Ellison Bentleyand Helena Rylander,-

Cavernous sinus syndrome in dogs and cats: case series

(2002-2015)Open Veterinary Journal, (2018), Vol. 8(2): 186-192

- 132 -

第136页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

该动物为混血长毛猫,12岁,雄性绝育,近期未

免疫,主饲猫粮。日常老人饲养,我院就诊前一日早

上发现四肢无力,时而角弓反张,精神萎靡,向右侧

歪头,出现多次呕吐及流涎,可自行排尿;症状逐渐

加重至我院就诊时完全瘫痪;就诊前在两家医院进行

检查和治疗,外院判断全身X线及基础血检无异常,

进行吸氧、维生素B族和补液等支持治疗;

三年前诊断为慢性肾病二期,轻度蛋白尿,一

直服用替米沙坦。

入院体格检查显示体重近期无变化为3.3kg,体

温36.6°C,胸腹式呼吸36次/分钟,CRT<1秒,心率

120次/分钟,收缩压190mmgh。动物消瘦,BSC评

分3/9;可视粘膜潮红,口腔牙龈红肿,双侧臼齿牙

结石严重,左侧上颌第四前臼齿牙龈萎缩,牙根暴

露,脓性渗出(图1),左眼眼部肿胀见分泌物(图

2),右眼正常。动物四肢瘫软仅可侧卧,呈角弓反

张,意识正常。听诊心律不齐、呼吸音正常。触诊

体表淋巴结未见异常,腹部未见异常。

动物体温降低、瘫痪及角弓反张,分诊为危重

症,因出现瘫痪及角弓反张,神经系统疾病为首要

考虑的类型。听诊可见心杂音及心律不齐,全身无

简介 病历分析

ABM是由于细菌感染导致软脑膜及脑实质发生

炎症,并伴有严重脑功能障碍的急性CNS疾病,主

要感染途径有开放性颅脑创伤、中耳、鼻-喉部、头

部其他局部感染以及全身局部病灶引发血源性感染

所继发。脑部细菌感染可能通过产生肿物效应(即

组织脓肿)或释放细菌毒素而导致神经功能障碍[5]。

任何年龄、品种或性别的犬和猫都可能患有ABM,

但在青中年动物(如1~7岁)中更常见[9]发烧和颈部

感觉过敏被认为是ABM的典型特征,但可能并不明

显或无法与其他脑炎进行有效区分[10]与其他疾病一

样,神经功能障碍的临床症状取决于病变的位置和

范围。抗生素为主要的治疗手段,理想情况下,

ABM的抗生素治疗取决于致病微生物的细菌培养/

药敏试验结果。在无法得到有效报告或治疗前期,

可以通过经验性给药进行治疗。

不幸的是,目前还没有关于大量犬或猫确诊

ABM的合适治疗方法的报道。可获得的少量资料表

明总体预后不良,有个别犬和猫ABM成功治疗的报

道。与人细菌性CNS感染相似,早期诊断和快速、

积极的治疗是成功治疗犬猫ABM的关键。通过本病

例报告为读者在临床诊疗中提供参考。

病例分析:一例猫牙周炎疑似

继发急性细菌性脑膜脑炎的诊疗病例报告

Case report:A case report of acute bacterial meningoencephalitis suspected secondary to periodontitis in a cat

作者:楼凌森(杭州美联众合动物医院博大转诊中心)

审校:林毓暐(上海顽皮家族宠物医院)

摘要:

急性细菌性脑膜脑炎(Acute Bacterial Meningoencephalitis,ABM)是一种在犬猫报道中相对少见的中

枢神经系统(Central Nervous System,CNS)疾病,可以通过神经学检查和常规全身检查得神经系统异常的

结论及定位,再通过核磁共振(MRI)检查确认 / 疑似颅内异常炎性影像特征,最后结合脑脊液(Cerebrospinal

Fluid,CSF)检查进行诊断,抗生素为主要的治疗手段。一只老年混血猫因急性神经症状入院,检查诊断为细菌

性脑膜脑炎,进行全身局部感染性病灶筛查,怀疑因牙周炎引发。通过有效的抗生素联合辅助治疗,动物症状

得到有效快速控制。

关键词:牙周炎;细菌性;抗生素 ; 脑膜脑炎 ; 猫

力瘫软以及慢性肾病病史,在神经系统检查外需同

时对于心血管系统及代谢相关系统进行疾病筛查。

眼部肿胀可能与同侧发病的牙齿病灶相关,暂时不

作为前期鉴别依据。

神经学检查意识正常,头向右侧歪斜(头部正

中切面发生旋转,耳朵右侧低于左侧),呈现阵发

性角弓反张(头颈后仰前肢僵直后肢及臀部屈曲,

每次持续约10-20分钟后自行解除,间隔期无规律

约20分钟至1小时)(图3)。本体感受测试四肢均

缺失,视觉与触觉放置反应均缺失。双侧威吓反射

均消失,瞳孔对光反射及其余脑神经反射均正常。

非角弓反张状态下,肌张力正常,脊髓反射均正常

,膀胱可触及不充盈。

动物四肢瘫痪、本体感受及放置反应均缺失,

但脊髓反射均为正常。阵发性角弓反张的姿势较为

特异,结合意识状态,可判断为去小脑化僵直,该

姿势提示小脑急性病变。歪头提示前庭系统受损,

虽未见更多神经学异常,但结合整体评估仍更倾向

于中枢性的前庭受损。综上所述,神经学检查可以

证实动物的发病位置为CNS,考虑多灶性。定位为

前脑、小脑,颈部脊髓及前庭系统需进一步鉴别。

疾病类型鉴别范围包含但不仅限于:肿瘤性、炎症

性、血管性,需通过全身检查、颅脑MRI及CSF检查

进一步鉴别。

血液检查爱德士五分类全血细胞计数无异常,爱

德士生化全项及血氨仅见肌酐上升(238μmol/L),雅

培Cg8+血气无异常,超声心动无异常,全腹部超声

无异常。肌酐上升对比病史,为慢性肾病所致。

颅脑MRI扫查可见,双侧大脑对称,脑中线无

偏移,整体脑回不明显脑沟模糊。双侧颞叶见弥漫

非对称非均质的T2w高T1w等信号区域 ,区域内病

灶边缘不清局部T2w信号高亮FLAIR均无抑制,均无

占位效应(图3)。脑室系统均未见明显扩张。小脑

结构模糊,脑回不明显,后缘疝出至枕骨后于腹侧

压迫脑干,小脑实质整体见弥漫非均质非对称的

T2w高T1w等信号变化,局边多处T2w高亮FLAIR可

抑制(图4 图5)。脑干右侧及中部见局部边界模糊

T2w轻度增高T1W轻度下降区域(图4 图5)。注射

钆剂后T1w下未见增强显影区域。鼻部、耳部未见

异常,颈部近脑端脊髓中央管轻度扩张。

通过影像描述,得知小脑、大脑、脑干均出现

了不同程度的病变。根据病灶信号、结构及占位性

等特征,判断病灶性质为浸润性病变,所以首要考

虑的疾病类型为炎性,多发性脑梗死或肿瘤也将在

鉴别范围内。因影像易于发现病灶但无法确定病灶

性质的特性,我们需要进行CSF检测甚至组织病理

结果来得到最终诊断。

MRI后立即于枕骨后小脑延髓池进行CSF采集。

CSF性状无色轻度浑浊,通过脑脊液细胞量检测,有

核细胞数为920个/ul(正常值<10),无红细胞。通

过沉淀法染色制片进行细胞学判读,偶见球菌,大

量中性粒细胞存在球菌吞噬相(图)。送检上海兽

丘宠物第三方实验室,于第二日出具蛋白量结果为

50.74 mg/dL(正常值< 30 mg/dL),PCR筛查冠状

病毒、弓形虫、加州型与俄亥俄州型猫血巴尔通体

、博尔纳病毒,均为阴性。第四日送检出具细菌培

养为阳性,药敏试验显示阿莫西林克拉维酸钾、头

孢曲松、头孢噻圬、头孢哌酮舒巴坦钠、氨苄西林

为敏感,青霉素、多西环素、米诺环素为中介。第

七日送检出具细菌鉴定结果,为假中间葡萄球菌。

正常脑脊液中存在的细胞含量微乎其微,有核

细胞数的少量上升(>30个/ul),即可提示存在炎

症,该病例数量远远超出该范围,且蛋白量也上升

(因送检时效性影响,实际蛋白量应大于所检测数

值),提示CNS存在炎症。脑炎的鉴别中分为感染

性与非感染性,通过脑脊液的筛查可缩小诊断范围

或确诊。细胞学镜下偶见球菌,可提示细菌感染但

不排除染色干扰,同时出现中性粒细胞球菌吞噬相

(图7)则可明确CNS炎症为细菌感染。结合动物发

病过程及其余检验结果,可诊断为ABM。滞后的送

检结果,也进一步验证了院内脑脊液检测的判断。

- 134 -

第137页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

该动物为混血长毛猫,12岁,雄性绝育,近期未

免疫,主饲猫粮。日常老人饲养,我院就诊前一日早

上发现四肢无力,时而角弓反张,精神萎靡,向右侧

歪头,出现多次呕吐及流涎,可自行排尿;症状逐渐

加重至我院就诊时完全瘫痪;就诊前在两家医院进行

检查和治疗,外院判断全身X线及基础血检无异常,

进行吸氧、维生素B族和补液等支持治疗;

三年前诊断为慢性肾病二期,轻度蛋白尿,一

直服用替米沙坦。

入院体格检查显示体重近期无变化为3.3kg,体

温36.6°C,胸腹式呼吸36次/分钟,CRT<1秒,心率

120次/分钟,收缩压190mmgh。动物消瘦,BSC评

分3/9;可视粘膜潮红,口腔牙龈红肿,双侧臼齿牙

结石严重,左侧上颌第四前臼齿牙龈萎缩,牙根暴

露,脓性渗出(图1),左眼眼部肿胀见分泌物(图

2),右眼正常。动物四肢瘫软仅可侧卧,呈角弓反

张,意识正常。听诊心律不齐、呼吸音正常。触诊

体表淋巴结未见异常,腹部未见异常。

动物体温降低、瘫痪及角弓反张,分诊为危重

症,因出现瘫痪及角弓反张,神经系统疾病为首要

考虑的类型。听诊可见心杂音及心律不齐,全身无

力瘫软以及慢性肾病病史,在神经系统检查外需同

时对于心血管系统及代谢相关系统进行疾病筛查。

眼部肿胀可能与同侧发病的牙齿病灶相关,暂时不

作为前期鉴别依据。

神经学检查意识正常,头向右侧歪斜(头部正

中切面发生旋转,耳朵右侧低于左侧),呈现阵发

图 1:体格检查时病灶侧口腔

图2:体格检查时眼部表现

图3:角弓反张/去小脑化僵直姿势

性角弓反张(头颈后仰前肢僵直后肢及臀部屈曲,

每次持续约10-20分钟后自行解除,间隔期无规律

约20分钟至1小时)(图3)。本体感受测试四肢均

缺失,视觉与触觉放置反应均缺失。双侧威吓反射

均消失,瞳孔对光反射及其余脑神经反射均正常。

非角弓反张状态下,肌张力正常,脊髓反射均正常

,膀胱可触及不充盈。

动物四肢瘫痪、本体感受及放置反应均缺失,

但脊髓反射均为正常。阵发性角弓反张的姿势较为

特异,结合意识状态,可判断为去小脑化僵直,该

姿势提示小脑急性病变。歪头提示前庭系统受损,

虽未见更多神经学异常,但结合整体评估仍更倾向

于中枢性的前庭受损。综上所述,神经学检查可以

证实动物的发病位置为CNS,考虑多灶性。定位为

前脑、小脑,颈部脊髓及前庭系统需进一步鉴别。

疾病类型鉴别范围包含但不仅限于:肿瘤性、炎症

性、血管性,需通过全身检查、颅脑MRI及CSF检查

进一步鉴别。

血液检查爱德士五分类全血细胞计数无异常,爱

德士生化全项及血氨仅见肌酐上升(238μmol/L),雅

培Cg8+血气无异常,超声心动无异常,全腹部超声

无异常。肌酐上升对比病史,为慢性肾病所致。

颅脑MRI扫查可见,双侧大脑对称,脑中线无

偏移,整体脑回不明显脑沟模糊。双侧颞叶见弥漫

非对称非均质的T2w高T1w等信号区域 ,区域内病

灶边缘不清局部T2w信号高亮FLAIR均无抑制,均无

占位效应(图3)。脑室系统均未见明显扩张。小脑

结构模糊,脑回不明显,后缘疝出至枕骨后于腹侧

压迫脑干,小脑实质整体见弥漫非均质非对称的

T2w高T1w等信号变化,局边多处T2w高亮FLAIR可

抑制(图4 图5)。脑干右侧及中部见局部边界模糊

T2w轻度增高T1W轻度下降区域(图4 图5)。注射

钆剂后T1w下未见增强显影区域。鼻部、耳部未见

异常,颈部近脑端脊髓中央管轻度扩张。

通过影像描述,得知小脑、大脑、脑干均出现

了不同程度的病变。根据病灶信号、结构及占位性

等特征,判断病灶性质为浸润性病变,所以首要考

虑的疾病类型为炎性,多发性脑梗死或肿瘤也将在

鉴别范围内。因影像易于发现病灶但无法确定病灶

性质的特性,我们需要进行CSF检测甚至组织病理

结果来得到最终诊断。

MRI后立即于枕骨后小脑延髓池进行CSF采集。

CSF性状无色轻度浑浊,通过脑脊液细胞量检测,有

核细胞数为920个/ul(正常值<10),无红细胞。通

过沉淀法染色制片进行细胞学判读,偶见球菌,大

量中性粒细胞存在球菌吞噬相(图)。送检上海兽

丘宠物第三方实验室,于第二日出具蛋白量结果为

50.74 mg/dL(正常值< 30 mg/dL),PCR筛查冠状

病毒、弓形虫、加州型与俄亥俄州型猫血巴尔通体

、博尔纳病毒,均为阴性。第四日送检出具细菌培

养为阳性,药敏试验显示阿莫西林克拉维酸钾、头

孢曲松、头孢噻圬、头孢哌酮舒巴坦钠、氨苄西林

为敏感,青霉素、多西环素、米诺环素为中介。第

七日送检出具细菌鉴定结果,为假中间葡萄球菌。

正常脑脊液中存在的细胞含量微乎其微,有核

细胞数的少量上升(>30个/ul),即可提示存在炎

症,该病例数量远远超出该范围,且蛋白量也上升

(因送检时效性影响,实际蛋白量应大于所检测数

值),提示CNS存在炎症。脑炎的鉴别中分为感染

性与非感染性,通过脑脊液的筛查可缩小诊断范围

或确诊。细胞学镜下偶见球菌,可提示细菌感染但

不排除染色干扰,同时出现中性粒细胞球菌吞噬相

(图7)则可明确CNS炎症为细菌感染。结合动物发

病过程及其余检验结果,可诊断为ABM。滞后的送

检结果,也进一步验证了院内脑脊液检测的判断。

- 135-

第138页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

该动物为混血长毛猫,12岁,雄性绝育,近期未

免疫,主饲猫粮。日常老人饲养,我院就诊前一日早

上发现四肢无力,时而角弓反张,精神萎靡,向右侧

歪头,出现多次呕吐及流涎,可自行排尿;症状逐渐

加重至我院就诊时完全瘫痪;就诊前在两家医院进行

检查和治疗,外院判断全身X线及基础血检无异常,

进行吸氧、维生素B族和补液等支持治疗;

三年前诊断为慢性肾病二期,轻度蛋白尿,一

直服用替米沙坦。

入院体格检查显示体重近期无变化为3.3kg,体

温36.6°C,胸腹式呼吸36次/分钟,CRT<1秒,心率

120次/分钟,收缩压190mmgh。动物消瘦,BSC评

分3/9;可视粘膜潮红,口腔牙龈红肿,双侧臼齿牙

结石严重,左侧上颌第四前臼齿牙龈萎缩,牙根暴

露,脓性渗出(图1),左眼眼部肿胀见分泌物(图

2),右眼正常。动物四肢瘫软仅可侧卧,呈角弓反

张,意识正常。听诊心律不齐、呼吸音正常。触诊

体表淋巴结未见异常,腹部未见异常。

动物体温降低、瘫痪及角弓反张,分诊为危重

症,因出现瘫痪及角弓反张,神经系统疾病为首要

考虑的类型。听诊可见心杂音及心律不齐,全身无

力瘫软以及慢性肾病病史,在神经系统检查外需同

时对于心血管系统及代谢相关系统进行疾病筛查。

眼部肿胀可能与同侧发病的牙齿病灶相关,暂时不

作为前期鉴别依据。

神经学检查意识正常,头向右侧歪斜(头部正

中切面发生旋转,耳朵右侧低于左侧),呈现阵发

性角弓反张(头颈后仰前肢僵直后肢及臀部屈曲,

每次持续约10-20分钟后自行解除,间隔期无规律

约20分钟至1小时)(图3)。本体感受测试四肢均

缺失,视觉与触觉放置反应均缺失。双侧威吓反射

均消失,瞳孔对光反射及其余脑神经反射均正常。

非角弓反张状态下,肌张力正常,脊髓反射均正常

,膀胱可触及不充盈。

动物四肢瘫痪、本体感受及放置反应均缺失,

但脊髓反射均为正常。阵发性角弓反张的姿势较为

特异,结合意识状态,可判断为去小脑化僵直,该

姿势提示小脑急性病变。歪头提示前庭系统受损,

虽未见更多神经学异常,但结合整体评估仍更倾向

于中枢性的前庭受损。综上所述,神经学检查可以

证实动物的发病位置为CNS,考虑多灶性。定位为

前脑、小脑,颈部脊髓及前庭系统需进一步鉴别。

疾病类型鉴别范围包含但不仅限于:肿瘤性、炎症

性、血管性,需通过全身检查、颅脑MRI及CSF检查

进一步鉴别。

血液检查爱德士五分类全血细胞计数无异常,爱

德士生化全项及血氨仅见肌酐上升(238μmol/L),雅

培Cg8+血气无异常,超声心动无异常,全腹部超声

无异常。肌酐上升对比病史,为慢性肾病所致。

颅脑MRI扫查可见,双侧大脑对称,脑中线无

偏移,整体脑回不明显脑沟模糊。双侧颞叶见弥漫

非对称非均质的T2w高T1w等信号区域 ,区域内病

灶边缘不清局部T2w信号高亮FLAIR均无抑制,均无

占位效应(图3)。脑室系统均未见明显扩张。小脑

结构模糊,脑回不明显,后缘疝出至枕骨后于腹侧

压迫脑干,小脑实质整体见弥漫非均质非对称的

T2w高T1w等信号变化,局边多处T2w高亮FLAIR可

抑制(图4 图5)。脑干右侧及中部见局部边界模糊

T2w轻度增高T1W轻度下降区域(图4 图5)。注射

钆剂后T1w下未见增强显影区域。鼻部、耳部未见

异常,颈部近脑端脊髓中央管轻度扩张。

通过影像描述,得知小脑、大脑、脑干均出现

了不同程度的病变。根据病灶信号、结构及占位性

等特征,判断病灶性质为浸润性病变,所以首要考

虑的疾病类型为炎性,多发性脑梗死或肿瘤也将在

鉴别范围内。因影像易于发现病灶但无法确定病灶

性质的特性,我们需要进行CSF检测甚至组织病理

结果来得到最终诊断。

MRI后立即于枕骨后小脑延髓池进行CSF采集。

CSF性状无色轻度浑浊,通过脑脊液细胞量检测,有

核细胞数为920个/ul(正常值<10),无红细胞。通

过沉淀法染色制片进行细胞学判读,偶见球菌,大

量中性粒细胞存在球菌吞噬相(图)。送检上海兽

丘宠物第三方实验室,于第二日出具蛋白量结果为

50.74 mg/dL(正常值< 30 mg/dL),PCR筛查冠状

病毒、弓形虫、加州型与俄亥俄州型猫血巴尔通体

、博尔纳病毒,均为阴性。第四日送检出具细菌培

养为阳性,药敏试验显示阿莫西林克拉维酸钾、头

孢曲松、头孢噻圬、头孢哌酮舒巴坦钠、氨苄西林

为敏感,青霉素、多西环素、米诺环素为中介。第

七日送检出具细菌鉴定结果,为假中间葡萄球菌。

正常脑脊液中存在的细胞含量微乎其微,有核

细胞数的少量上升(>30个/ul),即可提示存在炎

症,该病例数量远远超出该范围,且蛋白量也上升

图4:小脑及脑干横断面,T2w和T1w下大面积异常高低信号

(因送检时效性影响,实际蛋白量应大于所检测数

值),提示CNS存在炎症。脑炎的鉴别中分为感染

性与非感染性,通过脑脊液的筛查可缩小诊断范围

或确诊。细胞学镜下偶见球菌,可提示细菌感染但

图7:脑脊液细胞学,中心粒细胞球菌吞噬相 不排除染色干扰,同时出现中性粒细胞球菌吞噬相

(图7)则可明确CNS炎症为细菌感染。结合动物发

病过程及其余检验结果,可诊断为ABM。滞后的送

检结果,也进一步验证了院内脑脊液检测的判断。

- 136 -

第139页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

该动物为混血长毛猫,12岁,雄性绝育,近期未

免疫,主饲猫粮。日常老人饲养,我院就诊前一日早

上发现四肢无力,时而角弓反张,精神萎靡,向右侧

歪头,出现多次呕吐及流涎,可自行排尿;症状逐渐

加重至我院就诊时完全瘫痪;就诊前在两家医院进行

检查和治疗,外院判断全身X线及基础血检无异常,

进行吸氧、维生素B族和补液等支持治疗;

三年前诊断为慢性肾病二期,轻度蛋白尿,一

直服用替米沙坦。

入院体格检查显示体重近期无变化为3.3kg,体

温36.6°C,胸腹式呼吸36次/分钟,CRT<1秒,心率

120次/分钟,收缩压190mmgh。动物消瘦,BSC评

分3/9;可视粘膜潮红,口腔牙龈红肿,双侧臼齿牙

结石严重,左侧上颌第四前臼齿牙龈萎缩,牙根暴

露,脓性渗出(图1),左眼眼部肿胀见分泌物(图

2),右眼正常。动物四肢瘫软仅可侧卧,呈角弓反

张,意识正常。听诊心律不齐、呼吸音正常。触诊

体表淋巴结未见异常,腹部未见异常。

动物体温降低、瘫痪及角弓反张,分诊为危重

症,因出现瘫痪及角弓反张,神经系统疾病为首要

考虑的类型。听诊可见心杂音及心律不齐,全身无

力瘫软以及慢性肾病病史,在神经系统检查外需同

时对于心血管系统及代谢相关系统进行疾病筛查。

眼部肿胀可能与同侧发病的牙齿病灶相关,暂时不

作为前期鉴别依据。

神经学检查意识正常,头向右侧歪斜(头部正

中切面发生旋转,耳朵右侧低于左侧),呈现阵发

性角弓反张(头颈后仰前肢僵直后肢及臀部屈曲,

每次持续约10-20分钟后自行解除,间隔期无规律

约20分钟至1小时)(图3)。本体感受测试四肢均

缺失,视觉与触觉放置反应均缺失。双侧威吓反射

均消失,瞳孔对光反射及其余脑神经反射均正常。

非角弓反张状态下,肌张力正常,脊髓反射均正常

,膀胱可触及不充盈。

动物四肢瘫痪、本体感受及放置反应均缺失,

但脊髓反射均为正常。阵发性角弓反张的姿势较为

特异,结合意识状态,可判断为去小脑化僵直,该

姿势提示小脑急性病变。歪头提示前庭系统受损,

虽未见更多神经学异常,但结合整体评估仍更倾向

于中枢性的前庭受损。综上所述,神经学检查可以

证实动物的发病位置为CNS,考虑多灶性。定位为

前脑、小脑,颈部脊髓及前庭系统需进一步鉴别。

疾病类型鉴别范围包含但不仅限于:肿瘤性、炎症

性、血管性,需通过全身检查、颅脑MRI及CSF检查

进一步鉴别。

血液检查爱德士五分类全血细胞计数无异常,爱

德士生化全项及血氨仅见肌酐上升(238μmol/L),雅

培Cg8+血气无异常,超声心动无异常,全腹部超声

无异常。肌酐上升对比病史,为慢性肾病所致。

颅脑MRI扫查可见,双侧大脑对称,脑中线无

偏移,整体脑回不明显脑沟模糊。双侧颞叶见弥漫

非对称非均质的T2w高T1w等信号区域 ,区域内病

灶边缘不清局部T2w信号高亮FLAIR均无抑制,均无

占位效应(图3)。脑室系统均未见明显扩张。小脑

结构模糊,脑回不明显,后缘疝出至枕骨后于腹侧

压迫脑干,小脑实质整体见弥漫非均质非对称的

T2w高T1w等信号变化,局边多处T2w高亮FLAIR可

抑制(图4 图5)。脑干右侧及中部见局部边界模糊

T2w轻度增高T1W轻度下降区域(图4 图5)。注射

钆剂后T1w下未见增强显影区域。鼻部、耳部未见

异常,颈部近脑端脊髓中央管轻度扩张。

通过影像描述,得知小脑、大脑、脑干均出现

了不同程度的病变。根据病灶信号、结构及占位性

等特征,判断病灶性质为浸润性病变,所以首要考

虑的疾病类型为炎性,多发性脑梗死或肿瘤也将在

鉴别范围内。因影像易于发现病灶但无法确定病灶

性质的特性,我们需要进行CSF检测甚至组织病理

结果来得到最终诊断。

MRI后立即于枕骨后小脑延髓池进行CSF采集。

CSF性状无色轻度浑浊,通过脑脊液细胞量检测,有

核细胞数为920个/ul(正常值<10),无红细胞。通

过沉淀法染色制片进行细胞学判读,偶见球菌,大

量中性粒细胞存在球菌吞噬相(图)。送检上海兽

丘宠物第三方实验室,于第二日出具蛋白量结果为

50.74 mg/dL(正常值< 30 mg/dL),PCR筛查冠状

病毒、弓形虫、加州型与俄亥俄州型猫血巴尔通体

、博尔纳病毒,均为阴性。第四日送检出具细菌培

养为阳性,药敏试验显示阿莫西林克拉维酸钾、头

孢曲松、头孢噻圬、头孢哌酮舒巴坦钠、氨苄西林

为敏感,青霉素、多西环素、米诺环素为中介。第

七日送检出具细菌鉴定结果,为假中间葡萄球菌。

正常脑脊液中存在的细胞含量微乎其微,有核

细胞数的少量上升(>30个/ul),即可提示存在炎

症,该病例数量远远超出该范围,且蛋白量也上升

图5:大脑横断面,T2w下局部异常高信号

(因送检时效性影响,实际蛋白量应大于所检测数

值),提示CNS存在炎症。脑炎的鉴别中分为感染

性与非感染性,通过脑脊液的筛查可缩小诊断范围

或确诊。细胞学镜下偶见球菌,可提示细菌感染但

对于病因,上述全身检查中,除口腔牙周感染

外未见其他感染性病灶,所以需要通过牙科的进一

步检查和处理,来确定牙齿的问题和解决该隐患,

防止疾病复发。口腔目视下见大量牙结石附着,牙

龈红肿,左侧上颌第四前臼齿牙龈萎缩、牙根暴

露,有脓性渗出。动物在通过相应治疗后症状相对

稳定,第10日在麻醉后进行牙结石的去除,同时拍

摄牙科X线。考虑未拍摄X线不确定牙根病变的的类

型及侵袭范围,牙科医生决定先拍摄(图8),再行

处置。影像下可见病灶牙根周透明度呈不规则非均

质性升高,牙体轮廓不清晰,结合临床诊断为牙周

脓肿。牙周的细菌感染虽然不能直接被证明为病

因,但通过全身检查的鉴别,高度怀疑是该病灶引

发ABM。

因病情紧急,在药敏结果出具前,使用穿透血

图8:牙科X线,牙根周透明度升高,牙体轮廓不清

图9:刚拔出牙体时的病灶部位

不排除染色干扰,同时出现中性粒细胞球菌吞噬相

(图7)则可明确CNS炎症为细菌感染。结合动物发

病过程及其余检验结果,可诊断为ABM。滞后的送

检结果,也进一步验证了院内脑脊液检测的判断。

脑屏障的抗生素进行,头孢曲松钠为笔者经验之首

选,以50mg/kg每日2-3次静脉给药。药物使用后动

物症状得到改善,滞后的药敏结果也证实药物的有

效性,遂持续使用至出院(14日)。出院后改为口

服阿莫西林克拉维酸钾25mg/kg每日2次,继续持续

使用14日。

诊断提示脑部水肿及脑损伤,需配合甘露醇每

次0.5g/kg每日1-2次静脉给药。单唾液酸四己糖神

经节脂钠作为CNS修复剂以2mg/kg每日1次静脉给

药。动物存在高血压及肾病,在单纯使用替米沙坦

无效下,加入氨氯地平进行血压控制,血压上升考

虑颅脑外基础疾病或颅内压上升引发。

治疗期间,持续入住ICU仓和每日1次的高压氧

治疗,动物因神经功能障碍无法进食进水以及瘫

痪,给予半流质针管饲喂、局部按摩、定时翻身和

辅助排尿等特殊护理。

拍摄牙科X光后,清除了所有的牙结石,拔除了

病灶牙齿,并对病灶处进行了清创和缝合(图9),

每日给予碘甘油和口腔药物护理。

针灸及中药曾考虑使用,因动物症状迅速改善

至正常,遂未进行。

以首诊日为第1日计算,第2日动物角弓反张解

除,可自行趴卧及偶尔站立。第4日可以少量自主进

食进水,可以共济失调性的行走,同时出现款基

步、肢体与头部意向性震颤及辨距不良(前肢高抬

腿),前庭症状消失。第14日(牙科手术后四

日),眼部肿胀消退,神经功能障碍好转明显,精

神食欲正常,体征稳定,出院;第三十日复诊,主

诉运动功能正常可自行上下楼、跑跳及与家中猫咪

打闹,意识正常,未见行为异常。第94日,动物无

征兆性突发昏迷,入院后见低心率、低血压、体温

及呼吸微弱,抢救无效死亡,病因未知。

- 137 -

第140页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

对于病因,上述全身检查中,除口腔牙周感染

外未见其他感染性病灶,所以需要通过牙科的进一

步检查和处理,来确定牙齿的问题和解决该隐患,

防止疾病复发。口腔目视下见大量牙结石附着,牙

龈红肿,左侧上颌第四前臼齿牙龈萎缩、牙根暴

露,有脓性渗出。动物在通过相应治疗后症状相对

稳定,第10日在麻醉后进行牙结石的去除,同时拍

摄牙科X线。考虑未拍摄X线不确定牙根病变的的类

型及侵袭范围,牙科医生决定先拍摄(图8),再行

处置。影像下可见病灶牙根周透明度呈不规则非均

质性升高,牙体轮廓不清晰,结合临床诊断为牙周

脓肿。牙周的细菌感染虽然不能直接被证明为病

因,但通过全身检查的鉴别,高度怀疑是该病灶引

发ABM。

因病情紧急,在药敏结果出具前,使用穿透血

脑屏障的抗生素进行,头孢曲松钠为笔者经验之首

选,以50mg/kg每日2-3次静脉给药。药物使用后动

物症状得到改善,滞后的药敏结果也证实药物的有

效性,遂持续使用至出院(14日)。出院后改为口

服阿莫西林克拉维酸钾25mg/kg每日2次,继续持续

使用14日。

诊断提示脑部水肿及脑损伤,需配合甘露醇每

次0.5g/kg每日1-2次静脉给药。单唾液酸四己糖神

经节脂钠作为CNS修复剂以2mg/kg每日1次静脉给

药。动物存在高血压及肾病,在单纯使用替米沙坦

无效下,加入氨氯地平进行血压控制,血压上升考

虑颅脑外基础疾病或颅内压上升引发。

治疗期间,持续入住ICU仓和每日1次的高压氧

治疗,动物因神经功能障碍无法进食进水以及瘫

痪,给予半流质针管饲喂、局部按摩、定时翻身和

辅助排尿等特殊护理。

拍摄牙科X光后,清除了所有的牙结石,拔除了

病灶牙齿,并对病灶处进行了清创和缝合(图9),

每日给予碘甘油和口腔药物护理。

针灸及中药曾考虑使用,因动物症状迅速改善

至正常,遂未进行。

以首诊日为第1日计算,第2日动物角弓反张解

除,可自行趴卧及偶尔站立。第4日可以少量自主进

食进水,可以共济失调性的行走,同时出现款基

步、肢体与头部意向性震颤及辨距不良(前肢高抬

腿),前庭症状消失。第14日(牙科手术后四

日),眼部肿胀消退,神经功能障碍好转明显,精

神食欲正常,体征稳定,出院;第三十日复诊,主

诉运动功能正常可自行上下楼、跑跳及与家中猫咪

打闹,意识正常,未见行为异常。第94日,动物无

征兆性突发昏迷,入院后见低心率、低血压、体温

及呼吸微弱,抢救无效死亡,病因未知。

神经系统的细菌感染确诊报道并不常见[1]。细

菌可以通过血源或通过邻近病灶的感染延伸进入脑

部(如内耳炎延伸到脑干)[2]。血脑屏障以及CNS淋

巴系统的缺失有助于保护其免受微生物入侵。一旦

血脑屏障被病原体成功破坏,CNS的免疫豁免机制

对入侵的微生物是有利的,对宿主是不利的[3]。CNS

缺乏免疫活性细胞和补体,这给细菌的生长提供了

讨论

良好的环境。等到全身免疫系统的细胞进入CNS,

感染通常已经发生了。[4]

脑部细菌感染可能通过产生肿物效应(即组织

脓肿)或释放细菌毒素而导致神经功能障碍。但

是,引起神经功能缺损的主要原因是细菌引起的继

发性炎症反应[5]。炎症介质,如干扰素、肿瘤坏死

因子、前列腺素和激肽是白细胞对细菌产生反应的

产物。这些介质导致水肿、血管炎和梗死。通过吸

引更多的WBC到感染灶或病灶(趋化性),随即发

生自损性的组织损伤[6]。在犬和猫的细菌性脑膜脑

炎中,最常见的微生物是葡萄球菌和链球菌、多杀

巴斯德菌(尤其是猫)、放线菌和诺卡氏菌以及厌

氧菌(拟杆菌属、消化链球菌属、梭菌属、真杆菌

属)[7]。在近期一份关于犬细菌性脑膜脑炎的报道

中,最常见的致病微生物是大肠杆菌、链球菌和克

雷伯菌[4]。革兰氏阴性菌感染是最常见的,单一和

多个微生物感染的可能性相同。巴尔通体被认为是

犬和猫中枢神经系统疾病的潜在病因。[8]

任何年龄、品种或性别的犬和猫都可能患有

ABM,但在青中年动物(如1~7岁)中更常见[9]。

在一项研究中,大多数患病犬为纯种犬,患病的中

位年龄为5岁[5]。神经功能障碍的临床症状通常是急

性和迅速发展的。发烧和颈部感觉过敏被认为是

ABM的典型特征,但可能并不明显或无法与其他脑

炎进行有效区分[10]。据报道,发热和颈部感觉过敏

在犬细菌性脑膜脑炎的病例中分别占约40%和20%

[4]。与其他疾病一样,神经功能障碍的临床症状取

决于病变的位置和范围。可能为涉及前脑和(或)

脑干的局灶性和多灶性脑病。有些患病动物可能由

于全身性细菌感染而出现系统性疾病。

ABM的初步诊断是基于病史、临床检查以及实

验室检查结果。对抗生素治疗有效也支持诊断。

CBC结果可能提示全身性炎症反应,但情况往往并

非如此[11]。据报道,约57%的犬ABM病例出现白细

胞增多、白细胞减少和血小板减少等异常[12]。超过

70%的病例存在明显的血清生化异常(如ALT和SAP

水平升高、低血糖、高血糖)[13]。高级影像学检查

(CT、MRI)可能有助于诊断肿物性病变或阻塞性

脑积水。CSF分析可提供最有价值的信息,90%以

上的病例存在CSF异常[14]。ABM的典型症状是脑脊

液化脓,常伴有中性粒细胞退行性和中毒性改变。

蛋白质水平也经常升高[5]。CSF样本中存在细胞内细

菌可确诊。细胞外细菌可能是病原体,但也可能是

污染物。CSF、血液和(或)尿液细菌培养阳性也

支持细菌性脑膜脑炎的诊断[15]。由于在确诊的细菌

性脑膜脑炎的病例中,约80%的培养结果通常为阴

性[16],因此,阴性结果不应被过度判读。

理想情况下,ABM的抗生素治疗取决于致病微

生物的细菌培养/药敏试验结果。但由于多数兽医

院选择送检至第三方实验室进行检验,所以在检验

中常因运输和时效性等因素培养通常无法获得阳性

结果,这时抗生素治疗往往是基于CSF分析时看到

微生物的革兰氏染色结果,或者如果没有发现病原

体,则考虑最有可能的病原体[17]。治疗ABM的合适

抗生素最好是杀菌性,具有低水平的蛋白结合能

力,并且能够穿过血脑屏障。建议在最初的3~5d

内进行静脉注射治疗[18]。大多数犬和猫ABM推荐静

脉注射大剂量氨苄西林(如22mg/kg,每6h一

次),作为适当的治疗选择。氨苄西林能较好地穿

过发炎的BBB,且具有杀菌作用[18]。如果怀疑或确

认为革兰氏阴性菌感染,恩诺沙星(如10mg/kg,

静脉注射,每12h一次)或第三代头孢菌素(如头孢

噻肟25~50mg/kg,静脉注射,每8h一次)是一

个不错的选择[16]。甲硝唑(10mg/kg,缓慢静脉注

射,每8h一次)是大多数厌氧菌感染的最佳抗生素

选择[16]。甲硝唑应静脉注射30~40min以上,快速

输注会导致低血压。在严重的ABM的病例中,在等

待CSF化验结果(革兰氏染色、培养结果)的同时

进行联合抗菌治疗可能是需要斟酌的,首次给药一

旦无效,动物将更快速恶化甚至死亡[15]。根据有关

犬ABM病原体的信息,强烈建议使用对革兰氏阴性

菌具有强活性的抗生素[16]。虽然氯霉素是广谱抗生

素,并且容易穿过血脑屏障,但其在人类和实验性

犬ABM中的应用存在高复发率,这可能与该药物的

抑菌性质有关[15]。一旦对静脉注射抗生素治疗产生

积极的反应,就可以改为口服治疗。磺胺甲氧苄啶

(15mg/kg,口服,每12h一次)具有广谱杀菌作

用,即使血脑屏障未被破坏,它也能很容易穿透。

恩诺沙星和甲硝唑也有口服制剂。关于口服抗生素

治疗时间长短的建议各不相同。停用抗生素治疗的

理想依据是临床症状和正常的CSF复查结果。但

是,后者的信息通常很难得到。一般来说,抗生素

治疗应在临床症状消失后巩固10~14d[16]。

虽然糖皮质激素在感染时的使用通常是禁忌

的,但有大量证据表明,短期(最多4d)抗炎剂量

的糖皮质激素(如地塞米松0.15mg/kg,静脉注

射,每6h一次)可改善人ABM的预后[19]。对于犬和

猫来说,这种疾病也应该考虑这种治疗方法。如果

CT或MRI发现可以手术的脓肿,则手术治疗在ABM

的治疗中可能发挥重要作用[18]。

不幸的是,目前还没有关于大量犬或猫确诊

ABM的合适治疗方法的报道。可获得的少量资料表

明总体预后不良[20]。但是,人的细菌性脑膜炎经过

适当治疗后的存活率超过70%[19]。有个别犬和猫

ABM成功治疗的报道。与人ABM相似,早期诊断和

快速、积极的治疗是成功治疗犬和猫ABM的关键。

该病例基于动物临床症状、全身检查、颅脑

MRI及CSF检验得到了初步诊断,通过CSF培养和抗

生素有效证实该诊断,也验证了上述文献所描述的

诊断和治疗逻辑的正确性。在流行病学中,年龄、

特征性症状血检仅供读者参考,该病例就与该信息

不符。病患给药后症状逐步改善至恢复正常,期间

约90日未见临床症状反复表明本次感染已痊愈,证

实抗生素结合辅助疗法的可靠性。牙周炎为全身体

检中唯一被证实的可疑病因,虽无法完全证明其相

关性,但也为未来诊断提供相应依据。动物于90余

日出现体征迅速恶化至死亡,送诊至医院至死亡时

均无法进行更多临床检查,饲主拒绝尸检,遂无法

给出相应病因及与本文章所关联性的依据。

- 138 -

第141页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

参考文献:

1.Barrs VR, Nicoll RG, Churcher RK, et al. Intracranial

empyema: Literature review and two novel cases in cats. J

Small Anim Pract. 2007;48�449–454.

2.Brass DA. Pathophysiology and neuroimmunology of

bacterial meningitis. Compend Contin Edu Pract Vet.

1994;16�45– 53.

3.Cook LB, Bergman RL, Bahr A, Boothe HW. Inflammatory polyp in the middle ear with secondary suppurative meningoencephalitis in a cat. Vet Radiol Ultrasound.

神经系统的细菌感染确诊报道并不常见[1]。细

菌可以通过血源或通过邻近病灶的感染延伸进入脑

部(如内耳炎延伸到脑干)[2]。血脑屏障以及CNS淋

巴系统的缺失有助于保护其免受微生物入侵。一旦

血脑屏障被病原体成功破坏,CNS的免疫豁免机制

对入侵的微生物是有利的,对宿主是不利的[3]。CNS

缺乏免疫活性细胞和补体,这给细菌的生长提供了

良好的环境。等到全身免疫系统的细胞进入CNS,

感染通常已经发生了。[4]

脑部细菌感染可能通过产生肿物效应(即组织

脓肿)或释放细菌毒素而导致神经功能障碍。但

是,引起神经功能缺损的主要原因是细菌引起的继

发性炎症反应[5]。炎症介质,如干扰素、肿瘤坏死

因子、前列腺素和激肽是白细胞对细菌产生反应的

产物。这些介质导致水肿、血管炎和梗死。通过吸

引更多的WBC到感染灶或病灶(趋化性),随即发

生自损性的组织损伤[6]。在犬和猫的细菌性脑膜脑

炎中,最常见的微生物是葡萄球菌和链球菌、多杀

巴斯德菌(尤其是猫)、放线菌和诺卡氏菌以及厌

氧菌(拟杆菌属、消化链球菌属、梭菌属、真杆菌

属)[7]。在近期一份关于犬细菌性脑膜脑炎的报道

中,最常见的致病微生物是大肠杆菌、链球菌和克

雷伯菌[4]。革兰氏阴性菌感染是最常见的,单一和

多个微生物感染的可能性相同。巴尔通体被认为是

犬和猫中枢神经系统疾病的潜在病因。[8]

任何年龄、品种或性别的犬和猫都可能患有

ABM,但在青中年动物(如1~7岁)中更常见[9]。

在一项研究中,大多数患病犬为纯种犬,患病的中

位年龄为5岁[5]。神经功能障碍的临床症状通常是急

性和迅速发展的。发烧和颈部感觉过敏被认为是

ABM的典型特征,但可能并不明显或无法与其他脑

炎进行有效区分[10]。据报道,发热和颈部感觉过敏

在犬细菌性脑膜脑炎的病例中分别占约40%和20%

[4]。与其他疾病一样,神经功能障碍的临床症状取

决于病变的位置和范围。可能为涉及前脑和(或)

脑干的局灶性和多灶性脑病。有些患病动物可能由

于全身性细菌感染而出现系统性疾病。

ABM的初步诊断是基于病史、临床检查以及实

验室检查结果。对抗生素治疗有效也支持诊断。

CBC结果可能提示全身性炎症反应,但情况往往并

非如此[11]。据报道,约57%的犬ABM病例出现白细

胞增多、白细胞减少和血小板减少等异常[12]。超过

70%的病例存在明显的血清生化异常(如ALT和SAP

水平升高、低血糖、高血糖)[13]。高级影像学检查

(CT、MRI)可能有助于诊断肿物性病变或阻塞性

脑积水。CSF分析可提供最有价值的信息,90%以

上的病例存在CSF异常[14]。ABM的典型症状是脑脊

液化脓,常伴有中性粒细胞退行性和中毒性改变。

蛋白质水平也经常升高[5]。CSF样本中存在细胞内细

菌可确诊。细胞外细菌可能是病原体,但也可能是

污染物。CSF、血液和(或)尿液细菌培养阳性也

支持细菌性脑膜脑炎的诊断[15]。由于在确诊的细菌

性脑膜脑炎的病例中,约80%的培养结果通常为阴

性[16],因此,阴性结果不应被过度判读。

理想情况下,ABM的抗生素治疗取决于致病微

生物的细菌培养/药敏试验结果。但由于多数兽医

院选择送检至第三方实验室进行检验,所以在检验

中常因运输和时效性等因素培养通常无法获得阳性

结果,这时抗生素治疗往往是基于CSF分析时看到

微生物的革兰氏染色结果,或者如果没有发现病原

体,则考虑最有可能的病原体[17]。治疗ABM的合适

抗生素最好是杀菌性,具有低水平的蛋白结合能

力,并且能够穿过血脑屏障。建议在最初的3~5d

内进行静脉注射治疗[18]。大多数犬和猫ABM推荐静

脉注射大剂量氨苄西林(如22mg/kg,每6h一

次),作为适当的治疗选择。氨苄西林能较好地穿

过发炎的BBB,且具有杀菌作用[18]。如果怀疑或确

认为革兰氏阴性菌感染,恩诺沙星(如10mg/kg,

静脉注射,每12h一次)或第三代头孢菌素(如头孢

噻肟25~50mg/kg,静脉注射,每8h一次)是一

个不错的选择[16]。甲硝唑(10mg/kg,缓慢静脉注

射,每8h一次)是大多数厌氧菌感染的最佳抗生素

选择[16]。甲硝唑应静脉注射30~40min以上,快速

输注会导致低血压。在严重的ABM的病例中,在等

待CSF化验结果(革兰氏染色、培养结果)的同时

进行联合抗菌治疗可能是需要斟酌的,首次给药一

旦无效,动物将更快速恶化甚至死亡[15]。根据有关

犬ABM病原体的信息,强烈建议使用对革兰氏阴性

菌具有强活性的抗生素[16]。虽然氯霉素是广谱抗生

素,并且容易穿过血脑屏障,但其在人类和实验性

犬ABM中的应用存在高复发率,这可能与该药物的

抑菌性质有关[15]。一旦对静脉注射抗生素治疗产生

积极的反应,就可以改为口服治疗。磺胺甲氧苄啶

(15mg/kg,口服,每12h一次)具有广谱杀菌作

用,即使血脑屏障未被破坏,它也能很容易穿透。

恩诺沙星和甲硝唑也有口服制剂。关于口服抗生素

治疗时间长短的建议各不相同。停用抗生素治疗的

理想依据是临床症状和正常的CSF复查结果。但

是,后者的信息通常很难得到。一般来说,抗生素

治疗应在临床症状消失后巩固10~14d[16]。

虽然糖皮质激素在感染时的使用通常是禁忌

的,但有大量证据表明,短期(最多4d)抗炎剂量

的糖皮质激素(如地塞米松0.15mg/kg,静脉注

射,每6h一次)可改善人ABM的预后[19]。对于犬和

猫来说,这种疾病也应该考虑这种治疗方法。如果

CT或MRI发现可以手术的脓肿,则手术治疗在ABM

的治疗中可能发挥重要作用[18]。

不幸的是,目前还没有关于大量犬或猫确诊

ABM的合适治疗方法的报道。可获得的少量资料表

明总体预后不良[20]。但是,人的细菌性脑膜炎经过

适当治疗后的存活率超过70%[19]。有个别犬和猫

ABM成功治疗的报道。与人ABM相似,早期诊断和

快速、积极的治疗是成功治疗犬和猫ABM的关键。

该病例基于动物临床症状、全身检查、颅脑

MRI及CSF检验得到了初步诊断,通过CSF培养和抗

生素有效证实该诊断,也验证了上述文献所描述的

诊断和治疗逻辑的正确性。在流行病学中,年龄、

特征性症状血检仅供读者参考,该病例就与该信息

不符。病患给药后症状逐步改善至恢复正常,期间

约90日未见临床症状反复表明本次感染已痊愈,证

实抗生素结合辅助疗法的可靠性。牙周炎为全身体

检中唯一被证实的可疑病因,虽无法完全证明其相

关性,但也为未来诊断提供相应依据。动物于90余

日出现体征迅速恶化至死亡,送诊至医院至死亡时

均无法进行更多临床检查,饲主拒绝尸检,遂无法

给出相应病因及与本文章所关联性的依据。

2003;44�648–651.

4.Cross JR, Rossmeisl JH. Bartonella-associated pyogranulomatous meningoradiculoneuritis and nodular dermatitis in 3 dogs. J Vet Intern Med. 2007;21�591.

5.Dewey CW. Surgical Disorders of the Brain. Proceedings 23rd ACVIM Forum. 2005�324–326.

6.Espino L, Bermudez R, Fidalgo LE, et al. Meningoencephalitis associated with Staphylococcus warneri in a dog. J

Small Anim Pract. 2006;47�598–602

7.Fletcher DJ, Snyder JM, Messinger JS, et al. Ventricular

pneumocephalus and septic meningoencephalitis secondary

to dorsal rhinotomy and nasal polypectomy in a dog. J Am

Vet Med Assoc. 2006;229�240–245.

8.Gunn-Moore D. Infectious diseases of the central nervous system. Vet Clin North Am Small Anim Pract.

2005;35�103–128.Irwin PJ, Parry BW. Streptococcal meningoencephalitis in a dog. J Am Anim Hosp Assoc.

1999;35�417–422.

9.Kent M. Bacterial infections of the central nervous

system. In: CE Greene (ed.), Infectious Diseases of the Dog

and Cat. 3rd ed. Philadelphia: W.B. Saunders; 2006�962–974.

10.Leibovitz KR, Pearce LK, Brewer M, Lappin MR. Bartonella spp. antibodies and DNA in cerebral spinal fluid of

cats with central nervous system disease. J Vet Intern Med.

2007;21�642.

11.Munana KR. Encephalitis and meningitis. Vet Clin North

Am Small Anim Pract. 1996;26�857–874.

12.Odio CM, Faingezicht I, Paris M, et al. The beneficial

effects of early dexamethasone administration in infants and

children with bacterial meningitis. N Engl J Med.

1991;324�1525–1531.

13.Quagliarello VJ, Scheld WM. Treatment of bacterial meningitis. N Engl J Med. 1997;336�708–716.

14.Radaelli ST, Platt SR. Bacterial meningoencephalomyelitis in dogs: A retrospective study of 23 cases

(1990–1999). J Vet Intern Med. 2002;16�159–163.

15.Sigurdardottir B, Bjornsson OM, Jonsdottir KE, et

al. Acute bacterial meningitis in adults: A20-year overview.

Arch Intern Med. 1997;157�425–430.

16.Spangler EA, Dewey CW. Meningoencephalitis

secondary to bacterial otitis media/interna in a dog. J

Am Anim Hosp Assoc. 2000;36�239–243.

17.Sturges BK, Dickinson PJ, Kortz GD,et al. Clinical

signs, magnetic resonance imaging features, and outcome after surgical and medical treatment of otogenic

intracranial infection in 11 cats and 4 dogs. J Vet Intern

Med. 2006;20�648–656.

18.Tipold A. Diagnosis of inflammatory and infectious

diseases of the central nervous system in dogs: A retrospective study. J Vet Intern Med. 1995;9�304–314.

19.Tunkel AR, Wispelwey B, Scheld WM. Bacterial meningitis: Recent advances in pathophysiology and treatment.

Ann Intern Med. 1990;112�610–623

20.Wouters EG, Beukers M, Theyse LF. Surgical treatment of a cerebral brain abscess in a cat. Vet Comp Orthop

Traumatol. 2011;24�72–75

- 139 -

第142页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

参考文献:

1.Barrs VR, Nicoll RG, Churcher RK, et al. Intracranial

empyema: Literature review and two novel cases in cats. J

Small Anim Pract. 2007;48�449–454.

2.Brass DA. Pathophysiology and neuroimmunology of

bacterial meningitis. Compend Contin Edu Pract Vet.

1994;16�45– 53.

3.Cook LB, Bergman RL, Bahr A, Boothe HW. Inflammatory polyp in the middle ear with secondary suppurative meningoencephalitis in a cat. Vet Radiol Ultrasound.

2003;44�648–651.

4.Cross JR, Rossmeisl JH. Bartonella-associated pyogranulomatous meningoradiculoneuritis and nodular dermatitis in 3 dogs. J Vet Intern Med. 2007;21�591.

5.Dewey CW. Surgical Disorders of the Brain. Proceedings 23rd ACVIM Forum. 2005�324–326.

6.Espino L, Bermudez R, Fidalgo LE, et al. Meningoencephalitis associated with Staphylococcus warneri in a dog. J

Small Anim Pract. 2006;47�598–602

7.Fletcher DJ, Snyder JM, Messinger JS, et al. Ventricular

pneumocephalus and septic meningoencephalitis secondary

to dorsal rhinotomy and nasal polypectomy in a dog. J Am

Vet Med Assoc. 2006;229�240–245.

8.Gunn-Moore D. Infectious diseases of the central nervous system. Vet Clin North Am Small Anim Pract.

2005;35�103–128.Irwin PJ, Parry BW. Streptococcal meningoencephalitis in a dog. J Am Anim Hosp Assoc.

1999;35�417–422.

9.Kent M. Bacterial infections of the central nervous

system. In: CE Greene (ed.), Infectious Diseases of the Dog

and Cat. 3rd ed. Philadelphia: W.B. Saunders; 2006�962–974.

10.Leibovitz KR, Pearce LK, Brewer M, Lappin MR. Bartonella spp. antibodies and DNA in cerebral spinal fluid of

cats with central nervous system disease. J Vet Intern Med.

2007;21�642.

11.Munana KR. Encephalitis and meningitis. Vet Clin North

Am Small Anim Pract. 1996;26�857–874.

12.Odio CM, Faingezicht I, Paris M, et al. The beneficial

effects of early dexamethasone administration in infants and

children with bacterial meningitis. N Engl J Med.

1991;324�1525–1531.

13.Quagliarello VJ, Scheld WM. Treatment of bacterial meningitis. N Engl J Med. 1997;336�708–716.

14.Radaelli ST, Platt SR. Bacterial meningoencephalomyelitis in dogs: A retrospective study of 23 cases

(1990–1999). J Vet Intern Med. 2002;16�159–163.

15.Sigurdardottir B, Bjornsson OM, Jonsdottir KE, et

al. Acute bacterial meningitis in adults: A20-year overview.

Arch Intern Med. 1997;157�425–430.

16.Spangler EA, Dewey CW. Meningoencephalitis

secondary to bacterial otitis media/interna in a dog. J

Am Anim Hosp Assoc. 2000;36�239–243.

17.Sturges BK, Dickinson PJ, Kortz GD,et al. Clinical

signs, magnetic resonance imaging features, and outcome after surgical and medical treatment of otogenic

intracranial infection in 11 cats and 4 dogs. J Vet Intern

Med. 2006;20�648–656.

18.Tipold A. Diagnosis of inflammatory and infectious

diseases of the central nervous system in dogs: A retrospective study. J Vet Intern Med. 1995;9�304–314.

19.Tunkel AR, Wispelwey B, Scheld WM. Bacterial meningitis: Recent advances in pathophysiology and treatment.

Ann Intern Med. 1990;112�610–623

20.Wouters EG, Beukers M, Theyse LF. Surgical treatment of a cerebral brain abscess in a cat. Vet Comp Orthop

Traumatol. 2011;24�72–75

- 140 -

第143页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 141-

关钰澄

华南农业大学兽医硕士

现任职于爱诺百思动物医院

新瑞鹏集团神经专科优秀人才

Chi Univerisity认证兽医针灸师

至美国康奈尔大学神经科见习3个月

作者介绍

寄语

神经学是一个很有趣的学科,仅凭神经学检

查就能发现很多病例信息。神经系统疾病也并没

有想象中那么难以理解和罕见,希望越来越多伙

伴对神经学感兴趣,一起探讨神经病。

林毓暐

《小动物临床前沿-神经学专刊》主编

审校介绍

寄语

与所有专业与工作相同,神经科并不特殊,也不

特别困难或特别简单。一切皆从基础开始,积累每个

筑高需要的砖头与支架,这是方法。不贪多、不躁进、

不偷懒且保持谦卑,这是态度。对于知识体系具备清

晰蓝图,对疾病诊断逻辑能辩证论治,这是能力。而

能看到世界的美好与对生命有尊重、怜悯与不舍,则

是医者的情怀。诸多品质,愿与各位同进共勉。

德国汉诺威兽医学院 神经学博士

新瑞鹏集团神经学专科 带头人

上海顽皮家族国际医院 总院长暨神经科主任

第144页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

作者

关钰澄1

(广州爱诺百思动物医院)

高健2

(北京芭比堂中心医院)、林毓暐3

(上海顽皮家族动物医院)

1. 病例信息与病史

14岁,雄性未去势,金毛巡回猎犬,30kg,定

期驱虫,疫苗接种不全,无外伤史。

主诉多次抽搐发作,没有先兆,发作后随即侧躺

,强直-阵挛性,流涎,小便失禁,持续约 90s,发作

后期意识与行为正常,符合丛群性抽搐发作/抽搐密

集发作(Cluster Seizure)。已按时免疫和驱虫。

前言

相关检查

系统性高血压在小动物临床中诊断率越来越

高。受影响的器官可包括肾脏、眼睛、心血管系统

和中枢神经系统。高血压引起的犬猫神经系统并发

症包括脑血管疾病和高血压性脑病。高血压性脑病

在犬猫已有相关的病例报道,见于血压急剧升高(增

幅>30mmHg)和过高的收缩压(>180mmHg)。常

见的临床症状包括抽搐、意识改变、失明等,其它

症状具体取决于脑部受损区域。前脑广泛性功能障

碍伴高血压的鉴别诊断包括慢性肾脏疾病、肾上腺

皮质机能亢进和嗜铬细胞瘤。本文对一例犬肾上腺

皮质机能亢进伴发高血压脑病进行分析,并探讨诊

断思路。

病例分析:一例犬肾上腺皮质

机能亢进伴发高血压脑病的病例分析

Case report:hyperadrenocorticism concurrent with

hypertensive encephalopathy in a dog

摘要:

高血压引起的犬猫神经系统并发症包括脑血管疾病和高血压性脑病。高血压脑病是由于血压急剧升高

所引起的脑功能障碍,常见病因包括慢性肾脏疾病、肾上腺皮质机能亢进和嗜铬细胞瘤。该病发病急剧,进展

迅速,但及时治疗,预后良好。及时、准确的诊断是早期治疗的关键。本文对一例犬肾上腺皮质机能亢进伴发

高血压脑病进行分析,并探讨诊断思路。

关键词:牙周炎;细菌性;抗生素 ; 脑膜脑炎 ; 猫

2. 理学检查

体温38℃,呼吸频率30次/分钟,心率100bpm,

心杂音1/6,BCS评分6/9,收缩压180mmHg。

3. 神经学检查

4. 血液学检查

该患犬的血液学检查包括全血细胞计数、血液生

化检查、电解质检查、血氨(NH3 )和甲状腺激素浓

度检查(TT4),其中异常指标如下:

HCT = 35.8%(37.3-61.7),PLT=593 K/pL(148

- 484),BUN = 22.0 mmol/L(2.5-9.6)

CHOL = 8.50 mmol/L(2.84 - 8.26)。

- 142 -

项目 检查结果

意识与行为 有反应,不警觉

姿势与步态 步态正常,低头姿势,无共济失调,

双后肢运动表现僵直

姿势反应 双后肢本体感受缺失

脊髓反射 正常

触诊与痛觉 颈部疼痛、胸腰椎轻度疼痛、腰荐椎

中度疼痛;肌肉量,双后肢中度萎缩

颅神经检查 左侧威胁反应缺失,其余颅神经检查

正常。

病灶定位 右侧前脑,T3-L3

第145页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

5. 影像学检查

5.1 X 线检查

该患犬的血液学检查包括全血细胞计数、血液

生化检查、电解质检查、血氨(NH3 )和甲状腺激

素浓度检查(TT4),其中异常指标如下:

HCT = 35.8%(37.3-61.7),PLT=593 K/pL

(148 - 484),BUN = 22.0 mmol/L(2.5-9.6)

CHOL = 8.50 mmol/L(2.84 - 8.26)。

第6、7颈椎、第4-10胸椎腹侧不同程度骨质增

生、桥联,第3-6胸骨背侧骨质增生,部分桥联;

后肺区不透射性升高,局部可见“甜甜圈”影像

及双轨征,表现支气管型和间质型肺型;

心脏轮廓稍大,考虑拍摄时未处于吸气末,建

议结合心脏超声评估;

可见的前腹部胃内大量颗粒状、软组织不透射

性内容物(见图1)。

5.2 心脏超声检查

二尖瓣及三尖瓣增厚伴轻度返流,心律不齐。

5.3 腹部超声

1.左侧肾上腺增大,头极厚约9.7mm,尾极厚

约8.5mm;

2.左侧睾丸增大,右侧睾丸萎缩,前列腺囊

肿 ;

3.肝脏实质回声不均,轮廓平滑,边缘锐利,

脉管纹理清晰,实质散在高回声结节,边界不清;

4.左肾囊肿大小约14.9×14.2mm;

5.4 磁共振成像检查

通过1.5T核磁共振仪对患犬脑部进行平扫和延

迟期增强扫查,患犬仰卧位。分别获取T1-W造影前

和造影后、T2-W、T2*序列的矢状面、横断面、背

侧面;DWI、FLAIR、ADC序列的横断面(见图2、

图3)。

右侧嗅叶可见椭圆形非均匀的中心T2高信号、

T1低信号、FLAIR高信号。相邻的白质延伸呈T2高

信号、FLAIR高信号,符合血管性水肿特征,该肿物

在T1W造影后边缘增强,T2*序列上呈中间高信号边

缘低信号,提示出血。

双侧脑白质病变,考虑高血压脑病,脑白质疏松,代谢

性 / 中毒性 / 营养性脑病,炎症性脑病,变性脑病。右

前侧嗅叶血块,不排除肿瘤性出血或黑色素瘤等。脑

皮质轻度萎缩,考虑老年性萎缩。

6. 低剂量地塞米松抑制试验

7. 脑脊液检查

因为主人未同意脑脊液检查,所以没有进行。影

像学上的表现也明显提示不是感染性疾病的因素,但

是跟主人沟通了不能排除感染性因素的可能。蛋白质

浓度预期会有升高,但是蛋白质浓度升高并不会有助

于诊断特定的疾病。细胞学可能会有助于判断出血的

时间间期。后续的治疗缓解也提示了非感染性病因和

出血的可能性因素。

8. 诊断

肾上腺皮质机能亢进,脑出血和脑白质病,考虑

高血压脑病(后续依据治疗反应得以证实),与肾上腺

机能亢进相关;T3-L3 脊髓疾病待查。

- 143 -

项目 结果

可的松基础值

低剂量注射地塞米松 <

低剂量注射地塞米松

15 n

4h

8h 44

mol/L

14 nmol/L

nmol/L

第146页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 144 -

图2:患犬横断面MRI图像,序列从左至右依次为T2W、T1W、FLAIR、T2*

图3 :患犬矢状面和背侧面MRI图像,序列从左至右依次为T2W、T1W、FLAIR、T2*

第147页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 145 -

治疗方案

治疗肾上腺皮质机能亢进:曲洛斯坦 1mg/kg,

po,bid;

控制血压:氨氯地平 0.15mg/kg, po, bid;贝

那普利 0.5mg/kg, po, sid;

控制脑水肿:甘露醇、甲泼尼龙 1mg/kg,po, sid;

抗癫痫:苯巴比妥 2mg/kg po,sid、普瑞巴林

2.5mg/kg po bid;

营养支持:甲钴胺 0.5mg,po,bid;胞磷胆碱。

减 少 激 素 引 起 的 胃 肠 道 副 作 用:奥 美 拉 唑

1mg/kg,po,bid。

病例转归

该病例在治疗过程中再没有出现过抽搐,发病后

1 个月跟踪调查,血压恢复正常,肾上腺皮质机能亢进

在药物治疗下得到控制。

诊断思路

基于病史调查和理学检查与神经学检查,有两大

主要问题,抽搐与高血压。

根据宠主对疾病发作时的描述,并且就诊过程中

患犬出现抽搐发作,表现为倒地侧躺,失去自主意识,

四肢强直痉挛性抽动,面部和嘴巴抽动,伴随大量流

涎和小便失禁,可以判断患犬出现抽搐,当然若有视

频支持会更有可信度。抽搐为神经系统问题,根据神

经学临床推理的五指法则 (Five Finger Rule),本病例

为突发多次抽搐发作,非对称性,具有疼痛表现,病灶

位于右侧前脑和 T3-L3 的老年犬。由于主诉为抽搐发

作,且患犬反应稍有降低,优先诊断和处理右侧前脑

问题。

很多因素均可引起抽搐,颅外因素、颅内因素、特

发性癫痫、隐匿性 / 不明原因癫痫。

表1 :患犬问题列表与相应鉴别诊断

治疗及预后 讨论 为了排除颅外因素导致癫痫,并了解动物的身体

情况,以便 MRI 前的麻醉准备,需要检查全血细胞计

数、血清生化、胆汁酸、尿检以及根据病例信息和临床

表现进行血压检测、寄生虫和病毒的筛查、以及毒素

的筛查。本病例进行了相应的检查,根据检查结果得

到了更详细的问题列表和相应鉴别诊断(表 1)。综合

高阶影像学以外的检查结果,神经学检查可排除特发

性癫痫,患犬抽搐的病因缩小为血管性因素、颅内因

素、隐匿性 / 不明原因性癫痫,还需要进一步的高阶影

像学检查,评估脑部情况。高血压的原因则排除了甲

状腺疾病、药物 / 毒素、高黏血症、糖尿病,需要继续找

出引起高血压的潜在病因,并且验证抽搐与高血压在

该病例中是否有相关性。在老年动物中,同时出现多

个诱发高血压的因素并不罕见。猫需要考虑特发性高

血压,其全血细胞计数、血清生化、尿检等检查可能无

异常。

引起抽搐颅内的因素则需要高阶影像学、脑脊液

检查和脑电图,本病例进行 MR 检查,发现影像符合

脑血管病的出血性病变和脑白质病病变表现。结合通

过低剂量地塞米松刺激试验,确诊为肾上腺皮质机能

亢进。高血压性脑病通过治疗性诊断得以确定。

高血压性脑病的发病因素

目前,在犬猫中,与高血压相关的神经并发症包

括脑血管疾病和高血压性脑病 1。兽医有关高血压脑

病的病例报告仍较少。人医将高血压脑病归为脑后部

可逆性脑病综合征(PRES),以脑部血管性水肿为特

征,主要影响枕叶和颞叶,其中超过 33%PRES 患者出

现颅内出血 2

高血压性脑病的发病机制尚不完全明确,目前多

数倾向于“自动调节机制崩溃学说”,即由于血压突然

升高,超出脑血管自动调节限度,引起血管壁损伤和

血脑屏障通透性增加,引起局部或多灶性血管源性水

肿。随着病情的进展,由于脑血管通透性进一步增加,

血管壁缺血变性,病变脑组织由血管源性脑水肿发展

为细胞毒性脑水肿,并可夹杂出现灶性脑出血,甚至

出现脑梗死。PRES 的风险因素包括突发性动脉高压、

肾功能不全、子癫前期 / 子癫、免疫抑制性药物、自体

免疫性疾病、系统性感染 3,4。

脑血管疾病是老年人迟发性癫痫的主要发病风

险因素,除了卒中后癫痫性瘢痕、大脑皮质的微小梗

死灶以及(抑制性)神经传入作用受抑制引起的结构

性癫痫外,已证实肾素 - 血管紧张素系统失调也可引

起所谓的无诱因癫痫发作 5

在伴侣动物中,一项前瞻性的调查研究发现,36

只由于慢性肾病和 / 或甲状腺机能亢进引发的高血压

患猫,有 25% 的猫出现过抽搐,对该部分抽搐发作致

死的猫进行脑部病理组织学检查,15% 病例符合高血

压脑病的病理特征。在高血压患猫中,关于 PRES 样脑

血管性水肿是否为抽搐的独立诱发因素仍未明确。未

来需要更多前瞻性临床试验调查高血压患犬和猫的

癫痫发病率,以及进一步探讨血管紧张素分别对脑部

损伤和神经调节产生的影响 6

高血压性脑病的临床特征与诊断

高血压脑病是高血压继发引起抽搐和意识改变

等神经学异常的综合征,没有特异性的临床表现,取

决于受损的靶器官以及具体病灶位置,多见广泛性

的前脑症状,如意识迟钝、抽搐、皮质盲。高血压性脑

病见于严重的高血压以及血压急剧上升的患犬 7

。本

病例在右前侧嗅叶有血块,相关神经学异常只表现

为左侧威胁反应缺失。目前对于高血压血管收缩和

神经炎症是否会引起犬猫神经的退行性病变未有完

整的了解。急性的神经并发症以局灶性血管性卒中、

前庭疾病、神经 - 眼现象、弥散性前脑症状为特征。

高血压靶器官受损所引起的临床症状和实验室检查

将有助于诊断,如前房出血、视网膜脱落(特别是

猫)、肾脏生物学指标、心脏功能评估等。而高血压引

起的脑部损伤最可靠的诊断工具为磁共振成像技

术。通常高血压脑病可见双侧脑白质非对称性 T2-W

高信号,特别是在顶叶和枕叶区域。另外可见 T2 高

信号缺血灶或出血灶 6

本病例的磁共振影像除了在右侧嗅叶有出血灶

和血管性水肿表现以外,还可见脑白质病变。脑白质

病(Leukoencephalopathy)包括多种中枢神经系统疾

病,根 据 病 因,可 进 一 步 分 为 脑 白 质 营 养 不 良

(leukodystrophy)与 髓 鞘 形 成 不 足(hypomyelination)8。脑白质营养不良是以髓磷脂的生成与储备的

紊乱为特征的非炎性对称性脑部病变,髓鞘形成不足

以髓磷脂的完全丢失、髓磷脂的异常蓄积或生理性髓

磷脂不足为特征 9

。脑白质病变的鉴别诊断包括脱髓

鞘性脑病,脑白质变性,代谢性 / 中毒性 / 营养性疾病,

炎症性疾病等。获得性脑白质病与毒素的接触相关,

如六氯化苯、异烟肼、苯乙肼、溴鼠胺。遗传性脑白质

病则常见于年轻纯种犬,如金毛巡回猎犬、魏玛猎狗、

边境㹴10。病毒性感染(如细小病毒)、营养性因素(饲

喂受辐射日粮)也与脑白质病有关联 11,12, 13。

高血压性脑病的治疗与预后

高血压脑病需要紧急和激进的治疗,并且进行

重症监护。首要目的是控制颅内压、高血压和维持

脑部灌注。对于慢性高血压病患,脑部和肾脏的血

管自我调节已适应长期高血压状态;因此快速的降

血压治疗可能会引起严重的脑部低灌注,从而使颅

内压进一步升高。根据 ACVIM 共识,恰当的降血压

方案为,第一个小时降低收缩压约 10%,随后每小

时降低 15%,逐渐降低至目标血压 14。根据部分犬

猫高血压性脑病的病例分析,对肾性高血压和不明

原因性高血 压 的 病 患 经 验 性 使 用氨 氯 地平(0.1

mg/kg PO q 12 h)可避免低血压并发症,犬可结合

血管紧张素转化酶抑制剂依那普利(0.5 mg/kg PO

q 24 h),所有病患在 72 小时内临床症状得到改善,

并且回复至正常的神经学状态。在控制颅内压和脑

部水肿时,需要使用利尿剂和高渗药物,需小心血

压短暂升高的可能 6

25-45% PRES 病人会出现持续的 MRI 病灶,

10-25% 病人存在持续性的神经功能缺失 (Heo et al.

2016),犬猫高血压脑病的预后相对乐观,但目前仍

缺乏系统全面的研究,也尚未有一个研究数据充足

的治疗方案 6

肾上腺皮质机能亢进

肾上腺皮质机能亢进(HAC)是犬最常见的内分

泌疾病之一。一项英国对 21 万犬的流行病学调查研

究显示,HAC 发病率为 0.28%15,多见于 6 岁以上,雌

性犬(58-75%)。常见的临床症状包括多饮多尿、脱

毛、腹围增大、肝脏肿大、多食、肥胖、嗜睡、肌肉无力。

21-86% 犬出现高血压。血液学检查可见红细胞增多、

淋巴细胞减少、中性粒细胞减少、嗜酸性粒细胞减少、

单核细胞增多;肌酐、ALP、ALT、胆固醇、血糖升高等。

HAC 的诊断较有挑战性,且目前尚未有诊断的统一标

准。肾上腺功能测试包括尿液可的松与肌酐比、低剂

量地塞米松抑制试验(LDDST)、促肾上腺皮质激素

(ACTH)刺激试验 16,17。诊断了 HAC 后需要鉴别是垂

体依赖型肾上腺皮质机能亢进(PDH)还是功能性肾

上腺皮质肿瘤(AT)。本病例结合基本信息、临床症状

和 LDDST 结果较符合 PDH。

问题列表 鉴别诊断

抽搐

1.颅外因素:

电解质失衡:高血钠、低血钠、低血钙

营养能量不足:硫胺素缺乏、低血糖

器官功能紊乱:尿毒症脑病、肝性脑病

血管灌注性问题:红细胞增多症、高黏滞综合征、高血压

2.外源性毒素

3. 颅内因素:

结构畸形、肿瘤、炎症、感染、创伤、血管性

4.特发性癫痫

5.隐匿性/不明原因癫痫

高血压

1.贫血

2.中枢神经系统疾病

3.药物/毒素

4.内分泌疾病

5.肾上腺疾病

6.肾脏疾病

7.甲状腺疾病

8.高黏血症

9.特发性高血压

第148页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 146 -

诊断思路

基于病史调查和理学检查与神经学检查,有两大

主要问题,抽搐与高血压。

根据宠主对疾病发作时的描述,并且就诊过程中

患犬出现抽搐发作,表现为倒地侧躺,失去自主意识,

四肢强直痉挛性抽动,面部和嘴巴抽动,伴随大量流

涎和小便失禁,可以判断患犬出现抽搐,当然若有视

频支持会更有可信度。抽搐为神经系统问题,根据神

经学临床推理的五指法则 (Five Finger Rule),本病例

为突发多次抽搐发作,非对称性,具有疼痛表现,病灶

位于右侧前脑和 T3-L3 的老年犬。由于主诉为抽搐发

作,且患犬反应稍有降低,优先诊断和处理右侧前脑

问题。

很多因素均可引起抽搐,颅外因素、颅内因素、特

发性癫痫、隐匿性 / 不明原因癫痫。

表1 :患犬问题列表与相应鉴别诊断(接上表)

为了排除颅外因素导致癫痫,并了解动物的身体

情况,以便 MRI 前的麻醉准备,需要检查全血细胞计

数、血清生化、胆汁酸、尿检以及根据病例信息和临床

表现进行血压检测、寄生虫和病毒的筛查、以及毒素

的筛查。本病例进行了相应的检查,根据检查结果得

到了更详细的问题列表和相应鉴别诊断(表 1)。综合

高阶影像学以外的检查结果,神经学检查可排除特发

性癫痫,患犬抽搐的病因缩小为血管性因素、颅内因

素、隐匿性 / 不明原因性癫痫,还需要进一步的高阶影

像学检查,评估脑部情况。高血压的原因则排除了甲

状腺疾病、药物 / 毒素、高黏血症、糖尿病,需要继续找

出引起高血压的潜在病因,并且验证抽搐与高血压在

该病例中是否有相关性。在老年动物中,同时出现多

个诱发高血压的因素并不罕见。猫需要考虑特发性高

血压,其全血细胞计数、血清生化、尿检等检查可能无

异常。

引起抽搐颅内的因素则需要高阶影像学、脑脊液

检查和脑电图,本病例进行 MR 检查,发现影像符合

脑血管病的出血性病变和脑白质病病变表现。结合通

过低剂量地塞米松刺激试验,确诊为肾上腺皮质机能

亢进。高血压性脑病通过治疗性诊断得以确定。

高血压性脑病的发病因素

目前,在犬猫中,与高血压相关的神经并发症包

括脑血管疾病和高血压性脑病 1。兽医有关高血压脑

病的病例报告仍较少。人医将高血压脑病归为脑后部

可逆性脑病综合征(PRES),以脑部血管性水肿为特

征,主要影响枕叶和颞叶,其中超过 33%PRES 患者出

现颅内出血 2

高血压性脑病的发病机制尚不完全明确,目前多

数倾向于“自动调节机制崩溃学说”,即由于血压突然

升高,超出脑血管自动调节限度,引起血管壁损伤和

血脑屏障通透性增加,引起局部或多灶性血管源性水

肿。随着病情的进展,由于脑血管通透性进一步增加,

血管壁缺血变性,病变脑组织由血管源性脑水肿发展

为细胞毒性脑水肿,并可夹杂出现灶性脑出血,甚至

出现脑梗死。PRES 的风险因素包括突发性动脉高压、

肾功能不全、子癫前期 / 子癫、免疫抑制性药物、自体

免疫性疾病、系统性感染 3,4。

脑血管疾病是老年人迟发性癫痫的主要发病风

险因素,除了卒中后癫痫性瘢痕、大脑皮质的微小梗

死灶以及(抑制性)神经传入作用受抑制引起的结构

性癫痫外,已证实肾素 - 血管紧张素系统失调也可引

起所谓的无诱因癫痫发作 5

在伴侣动物中,一项前瞻性的调查研究发现,36

只由于慢性肾病和 / 或甲状腺机能亢进引发的高血压

患猫,有 25% 的猫出现过抽搐,对该部分抽搐发作致

死的猫进行脑部病理组织学检查,15% 病例符合高血

压脑病的病理特征。在高血压患猫中,关于 PRES 样脑

血管性水肿是否为抽搐的独立诱发因素仍未明确。未

来需要更多前瞻性临床试验调查高血压患犬和猫的

癫痫发病率,以及进一步探讨血管紧张素分别对脑部

损伤和神经调节产生的影响 6

高血压性脑病的临床特征与诊断

高血压脑病是高血压继发引起抽搐和意识改变

等神经学异常的综合征,没有特异性的临床表现,取

决于受损的靶器官以及具体病灶位置,多见广泛性

的前脑症状,如意识迟钝、抽搐、皮质盲。高血压性脑

病见于严重的高血压以及血压急剧上升的患犬 7

。本

病例在右前侧嗅叶有血块,相关神经学异常只表现

为左侧威胁反应缺失。目前对于高血压血管收缩和

神经炎症是否会引起犬猫神经的退行性病变未有完

整的了解。急性的神经并发症以局灶性血管性卒中、

前庭疾病、神经 - 眼现象、弥散性前脑症状为特征。

高血压靶器官受损所引起的临床症状和实验室检查

将有助于诊断,如前房出血、视网膜脱落(特别是

猫)、肾脏生物学指标、心脏功能评估等。而高血压引

起的脑部损伤最可靠的诊断工具为磁共振成像技

术。通常高血压脑病可见双侧脑白质非对称性 T2-W

高信号,特别是在顶叶和枕叶区域。另外可见 T2 高

信号缺血灶或出血灶 6

本病例的磁共振影像除了在右侧嗅叶有出血灶

和血管性水肿表现以外,还可见脑白质病变。脑白质

病(Leukoencephalopathy)包括多种中枢神经系统疾

病,根 据 病 因,可 进 一 步 分 为 脑 白 质 营 养 不 良

(leukodystrophy)与 髓 鞘 形 成 不 足(hypomyelination)8。脑白质营养不良是以髓磷脂的生成与储备的

紊乱为特征的非炎性对称性脑部病变,髓鞘形成不足

以髓磷脂的完全丢失、髓磷脂的异常蓄积或生理性髓

磷脂不足为特征 9

。脑白质病变的鉴别诊断包括脱髓

鞘性脑病,脑白质变性,代谢性 / 中毒性 / 营养性疾病,

炎症性疾病等。获得性脑白质病与毒素的接触相关,

如六氯化苯、异烟肼、苯乙肼、溴鼠胺。遗传性脑白质

病则常见于年轻纯种犬,如金毛巡回猎犬、魏玛猎狗、

边境㹴10。病毒性感染(如细小病毒)、营养性因素(饲

喂受辐射日粮)也与脑白质病有关联 11,12, 13。

高血压性脑病的治疗与预后

高血压脑病需要紧急和激进的治疗,并且进行

重症监护。首要目的是控制颅内压、高血压和维持

脑部灌注。对于慢性高血压病患,脑部和肾脏的血

管自我调节已适应长期高血压状态;因此快速的降

血压治疗可能会引起严重的脑部低灌注,从而使颅

内压进一步升高。根据 ACVIM 共识,恰当的降血压

方案为,第一个小时降低收缩压约 10%,随后每小

时降低 15%,逐渐降低至目标血压 14。根据部分犬

猫高血压性脑病的病例分析,对肾性高血压和不明

原因性高血 压 的 病 患 经 验 性 使 用氨 氯 地平(0.1

mg/kg PO q 12 h)可避免低血压并发症,犬可结合

血管紧张素转化酶抑制剂依那普利(0.5 mg/kg PO

q 24 h),所有病患在 72 小时内临床症状得到改善,

并且回复至正常的神经学状态。在控制颅内压和脑

部水肿时,需要使用利尿剂和高渗药物,需小心血

压短暂升高的可能 6

25-45% PRES 病人会出现持续的 MRI 病灶,

10-25% 病人存在持续性的神经功能缺失 (Heo et al.

2016),犬猫高血压脑病的预后相对乐观,但目前仍

缺乏系统全面的研究,也尚未有一个研究数据充足

的治疗方案 6

肾上腺皮质机能亢进

肾上腺皮质机能亢进(HAC)是犬最常见的内分

泌疾病之一。一项英国对 21 万犬的流行病学调查研

究显示,HAC 发病率为 0.28%15,多见于 6 岁以上,雌

性犬(58-75%)。常见的临床症状包括多饮多尿、脱

毛、腹围增大、肝脏肿大、多食、肥胖、嗜睡、肌肉无力。

21-86% 犬出现高血压。血液学检查可见红细胞增多、

淋巴细胞减少、中性粒细胞减少、嗜酸性粒细胞减少、

单核细胞增多;肌酐、ALP、ALT、胆固醇、血糖升高等。

HAC 的诊断较有挑战性,且目前尚未有诊断的统一标

准。肾上腺功能测试包括尿液可的松与肌酐比、低剂

量地塞米松抑制试验(LDDST)、促肾上腺皮质激素

(ACTH)刺激试验 16,17。诊断了 HAC 后需要鉴别是垂

体依赖型肾上腺皮质机能亢进(PDH)还是功能性肾

上腺皮质肿瘤(AT)。本病例结合基本信息、临床症状

和 LDDST 结果较符合 PDH。

问题列表 鉴别诊断

可再生性贫血 1.出血:内源性、外源性

2.溶血:基因型、获得性、免疫介导性、红细胞机械损伤

血小板增多症

1.老年动物正常表现

2.脾脏收缩

3.反应性表现:慢性出血、肾上腺皮质机能亢进、高血凝状态、副肿瘤综合征、感染、

高胆固醇血症

1.特发性高脂血症、餐后高脂血症

2.继发性高脂血症:胆汁淤积性肝病、糖尿病、肾上腺皮质技能亢进、甲状腺机能减退、

肾病综合征、胰腺疾病、蛋白丢失性肾病

尿素氮升高

1.肾前性

2.肾性

3.肾后性

肾上腺增大

1.肿瘤

2.增生

3.垂体依赖型肾上腺皮质技能亢进

4.应激性疾病

肝脏结节

1.结节性增生

2.囊肿

3.血肿

4.肿瘤

5.肝坏死

左侧睾丸增大/肿物,右侧

睾丸萎缩,前列腺囊肿;

1.肿瘤

2.良性增生

3.感染

二尖瓣及三尖瓣增厚伴轻度返流,心律不齐

肾脏皮质囊肿

第149页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 147 -

诊断思路

基于病史调查和理学检查与神经学检查,有两大

主要问题,抽搐与高血压。

根据宠主对疾病发作时的描述,并且就诊过程中

患犬出现抽搐发作,表现为倒地侧躺,失去自主意识,

四肢强直痉挛性抽动,面部和嘴巴抽动,伴随大量流

涎和小便失禁,可以判断患犬出现抽搐,当然若有视

频支持会更有可信度。抽搐为神经系统问题,根据神

经学临床推理的五指法则 (Five Finger Rule),本病例

为突发多次抽搐发作,非对称性,具有疼痛表现,病灶

位于右侧前脑和 T3-L3 的老年犬。由于主诉为抽搐发

作,且患犬反应稍有降低,优先诊断和处理右侧前脑

问题。

很多因素均可引起抽搐,颅外因素、颅内因素、特

发性癫痫、隐匿性 / 不明原因癫痫。

为了排除颅外因素导致癫痫,并了解动物的身体

情况,以便 MRI 前的麻醉准备,需要检查全血细胞计

数、血清生化、胆汁酸、尿检以及根据病例信息和临床

表现进行血压检测、寄生虫和病毒的筛查、以及毒素

的筛查。本病例进行了相应的检查,根据检查结果得

到了更详细的问题列表和相应鉴别诊断(表 1)。综合

高阶影像学以外的检查结果,神经学检查可排除特发

性癫痫,患犬抽搐的病因缩小为血管性因素、颅内因

素、隐匿性 / 不明原因性癫痫,还需要进一步的高阶影

像学检查,评估脑部情况。高血压的原因则排除了甲

状腺疾病、药物 / 毒素、高黏血症、糖尿病,需要继续找

出引起高血压的潜在病因,并且验证抽搐与高血压在

该病例中是否有相关性。在老年动物中,同时出现多

个诱发高血压的因素并不罕见。猫需要考虑特发性高

血压,其全血细胞计数、血清生化、尿检等检查可能无

异常。

引起抽搐颅内的因素则需要高阶影像学、脑脊液

检查和脑电图,本病例进行 MR 检查,发现影像符合

脑血管病的出血性病变和脑白质病病变表现。结合通

过低剂量地塞米松刺激试验,确诊为肾上腺皮质机能

亢进。高血压性脑病通过治疗性诊断得以确定。

高血压性脑病的发病因素

目前,在犬猫中,与高血压相关的神经并发症包

括脑血管疾病和高血压性脑病 1。兽医有关高血压脑

病的病例报告仍较少。人医将高血压脑病归为脑后部

可逆性脑病综合征(PRES),以脑部血管性水肿为特

征,主要影响枕叶和颞叶,其中超过 33%PRES 患者出

现颅内出血 2

高血压性脑病的发病机制尚不完全明确,目前多

数倾向于“自动调节机制崩溃学说”,即由于血压突然

升高,超出脑血管自动调节限度,引起血管壁损伤和

血脑屏障通透性增加,引起局部或多灶性血管源性水

肿。随着病情的进展,由于脑血管通透性进一步增加,

血管壁缺血变性,病变脑组织由血管源性脑水肿发展

为细胞毒性脑水肿,并可夹杂出现灶性脑出血,甚至

出现脑梗死。PRES 的风险因素包括突发性动脉高压、

肾功能不全、子癫前期 / 子癫、免疫抑制性药物、自体

免疫性疾病、系统性感染 3,4。

脑血管疾病是老年人迟发性癫痫的主要发病风

险因素,除了卒中后癫痫性瘢痕、大脑皮质的微小梗

死灶以及(抑制性)神经传入作用受抑制引起的结构

性癫痫外,已证实肾素 - 血管紧张素系统失调也可引

起所谓的无诱因癫痫发作 5

在伴侣动物中,一项前瞻性的调查研究发现,36

只由于慢性肾病和 / 或甲状腺机能亢进引发的高血压

患猫,有 25% 的猫出现过抽搐,对该部分抽搐发作致

死的猫进行脑部病理组织学检查,15% 病例符合高血

压脑病的病理特征。在高血压患猫中,关于 PRES 样脑

血管性水肿是否为抽搐的独立诱发因素仍未明确。未

来需要更多前瞻性临床试验调查高血压患犬和猫的

癫痫发病率,以及进一步探讨血管紧张素分别对脑部

损伤和神经调节产生的影响 6

高血压性脑病的临床特征与诊断

高血压脑病是高血压继发引起抽搐和意识改变

等神经学异常的综合征,没有特异性的临床表现,取

决于受损的靶器官以及具体病灶位置,多见广泛性

的前脑症状,如意识迟钝、抽搐、皮质盲。高血压性脑

病见于严重的高血压以及血压急剧上升的患犬 7

。本

病例在右前侧嗅叶有血块,相关神经学异常只表现

为左侧威胁反应缺失。目前对于高血压血管收缩和

神经炎症是否会引起犬猫神经的退行性病变未有完

整的了解。急性的神经并发症以局灶性血管性卒中、

前庭疾病、神经 - 眼现象、弥散性前脑症状为特征。

高血压靶器官受损所引起的临床症状和实验室检查

将有助于诊断,如前房出血、视网膜脱落(特别是

猫)、肾脏生物学指标、心脏功能评估等。而高血压引

起的脑部损伤最可靠的诊断工具为磁共振成像技

术。通常高血压脑病可见双侧脑白质非对称性 T2-W

高信号,特别是在顶叶和枕叶区域。另外可见 T2 高

信号缺血灶或出血灶 6

本病例的磁共振影像除了在右侧嗅叶有出血灶

和血管性水肿表现以外,还可见脑白质病变。脑白质

病(Leukoencephalopathy)包括多种中枢神经系统疾

病,根 据 病 因,可 进 一 步 分 为 脑 白 质 营 养 不 良

(leukodystrophy)与 髓 鞘 形 成 不 足(hypomyelination)8。脑白质营养不良是以髓磷脂的生成与储备的

紊乱为特征的非炎性对称性脑部病变,髓鞘形成不足

以髓磷脂的完全丢失、髓磷脂的异常蓄积或生理性髓

磷脂不足为特征 9

。脑白质病变的鉴别诊断包括脱髓

鞘性脑病,脑白质变性,代谢性 / 中毒性 / 营养性疾病,

炎症性疾病等。获得性脑白质病与毒素的接触相关,

如六氯化苯、异烟肼、苯乙肼、溴鼠胺。遗传性脑白质

病则常见于年轻纯种犬,如金毛巡回猎犬、魏玛猎狗、

边境㹴10。病毒性感染(如细小病毒)、营养性因素(饲

喂受辐射日粮)也与脑白质病有关联 11,12, 13。

高血压性脑病的治疗与预后

高血压脑病需要紧急和激进的治疗,并且进行

重症监护。首要目的是控制颅内压、高血压和维持

脑部灌注。对于慢性高血压病患,脑部和肾脏的血

管自我调节已适应长期高血压状态;因此快速的降

血压治疗可能会引起严重的脑部低灌注,从而使颅

内压进一步升高。根据 ACVIM 共识,恰当的降血压

方案为,第一个小时降低收缩压约 10%,随后每小

时降低 15%,逐渐降低至目标血压 14。根据部分犬

猫高血压性脑病的病例分析,对肾性高血压和不明

原因性高血 压 的 病 患 经 验 性 使 用氨 氯 地平(0.1

mg/kg PO q 12 h)可避免低血压并发症,犬可结合

血管紧张素转化酶抑制剂依那普利(0.5 mg/kg PO

q 24 h),所有病患在 72 小时内临床症状得到改善,

并且回复至正常的神经学状态。在控制颅内压和脑

部水肿时,需要使用利尿剂和高渗药物,需小心血

压短暂升高的可能 6

25-45% PRES 病人会出现持续的 MRI 病灶,

10-25% 病人存在持续性的神经功能缺失 (Heo et al.

2016),犬猫高血压脑病的预后相对乐观,但目前仍

缺乏系统全面的研究,也尚未有一个研究数据充足

的治疗方案 6

肾上腺皮质机能亢进

肾上腺皮质机能亢进(HAC)是犬最常见的内分

泌疾病之一。一项英国对 21 万犬的流行病学调查研

究显示,HAC 发病率为 0.28%15,多见于 6 岁以上,雌

性犬(58-75%)。常见的临床症状包括多饮多尿、脱

毛、腹围增大、肝脏肿大、多食、肥胖、嗜睡、肌肉无力。

21-86% 犬出现高血压。血液学检查可见红细胞增多、

淋巴细胞减少、中性粒细胞减少、嗜酸性粒细胞减少、

单核细胞增多;肌酐、ALP、ALT、胆固醇、血糖升高等。

HAC 的诊断较有挑战性,且目前尚未有诊断的统一标

准。肾上腺功能测试包括尿液可的松与肌酐比、低剂

量地塞米松抑制试验(LDDST)、促肾上腺皮质激素

(ACTH)刺激试验 16,17。诊断了 HAC 后需要鉴别是垂

体依赖型肾上腺皮质机能亢进(PDH)还是功能性肾

上腺皮质肿瘤(AT)。本病例结合基本信息、临床症状

和 LDDST 结果较符合 PDH。

第150页

小动物临床前沿(神经学专刊 - 上册)· 脑部疾病

Brain Diseases

New Frontier of Veterinary Medicine

2022 SEP | 总第 12 期

- 148 -

诊断思路

基于病史调查和理学检查与神经学检查,有两大

主要问题,抽搐与高血压。

根据宠主对疾病发作时的描述,并且就诊过程中

患犬出现抽搐发作,表现为倒地侧躺,失去自主意识,

四肢强直痉挛性抽动,面部和嘴巴抽动,伴随大量流

涎和小便失禁,可以判断患犬出现抽搐,当然若有视

频支持会更有可信度。抽搐为神经系统问题,根据神

经学临床推理的五指法则 (Five Finger Rule),本病例

为突发多次抽搐发作,非对称性,具有疼痛表现,病灶

位于右侧前脑和 T3-L3 的老年犬。由于主诉为抽搐发

作,且患犬反应稍有降低,优先诊断和处理右侧前脑

问题。

很多因素均可引起抽搐,颅外因素、颅内因素、特

发性癫痫、隐匿性 / 不明原因癫痫。

总结 为了排除颅外因素导致癫痫,并了解动物的身体

情况,以便 MRI 前的麻醉准备,需要检查全血细胞计

数、血清生化、胆汁酸、尿检以及根据病例信息和临床

表现进行血压检测、寄生虫和病毒的筛查、以及毒素

的筛查。本病例进行了相应的检查,根据检查结果得

到了更详细的问题列表和相应鉴别诊断(表 1)。综合

高阶影像学以外的检查结果,神经学检查可排除特发

性癫痫,患犬抽搐的病因缩小为血管性因素、颅内因

素、隐匿性 / 不明原因性癫痫,还需要进一步的高阶影

像学检查,评估脑部情况。高血压的原因则排除了甲

状腺疾病、药物 / 毒素、高黏血症、糖尿病,需要继续找

出引起高血压的潜在病因,并且验证抽搐与高血压在

该病例中是否有相关性。在老年动物中,同时出现多

个诱发高血压的因素并不罕见。猫需要考虑特发性高

血压,其全血细胞计数、血清生化、尿检等检查可能无

异常。

引起抽搐颅内的因素则需要高阶影像学、脑脊液

检查和脑电图,本病例进行 MR 检查,发现影像符合

脑血管病的出血性病变和脑白质病病变表现。结合通

过低剂量地塞米松刺激试验,确诊为肾上腺皮质机能

亢进。高血压性脑病通过治疗性诊断得以确定。

高血压性脑病的发病因素

目前,在犬猫中,与高血压相关的神经并发症包

括脑血管疾病和高血压性脑病 1。兽医有关高血压脑

病的病例报告仍较少。人医将高血压脑病归为脑后部

可逆性脑病综合征(PRES),以脑部血管性水肿为特

征,主要影响枕叶和颞叶,其中超过 33%PRES 患者出

现颅内出血 2

高血压性脑病的发病机制尚不完全明确,目前多

数倾向于“自动调节机制崩溃学说”,即由于血压突然

升高,超出脑血管自动调节限度,引起血管壁损伤和

血脑屏障通透性增加,引起局部或多灶性血管源性水

肿。随着病情的进展,由于脑血管通透性进一步增加,

血管壁缺血变性,病变脑组织由血管源性脑水肿发展

为细胞毒性脑水肿,并可夹杂出现灶性脑出血,甚至

出现脑梗死。PRES 的风险因素包括突发性动脉高压、

肾功能不全、子癫前期 / 子癫、免疫抑制性药物、自体

免疫性疾病、系统性感染 3,4。

脑血管疾病是老年人迟发性癫痫的主要发病风

险因素,除了卒中后癫痫性瘢痕、大脑皮质的微小梗

死灶以及(抑制性)神经传入作用受抑制引起的结构

性癫痫外,已证实肾素 - 血管紧张素系统失调也可引

起所谓的无诱因癫痫发作 5

在伴侣动物中,一项前瞻性的调查研究发现,36

只由于慢性肾病和 / 或甲状腺机能亢进引发的高血压

患猫,有 25% 的猫出现过抽搐,对该部分抽搐发作致

死的猫进行脑部病理组织学检查,15% 病例符合高血

压脑病的病理特征。在高血压患猫中,关于 PRES 样脑

血管性水肿是否为抽搐的独立诱发因素仍未明确。未

来需要更多前瞻性临床试验调查高血压患犬和猫的

癫痫发病率,以及进一步探讨血管紧张素分别对脑部

损伤和神经调节产生的影响 6

高血压性脑病的临床特征与诊断

高血压脑病是高血压继发引起抽搐和意识改变

等神经学异常的综合征,没有特异性的临床表现,取

决于受损的靶器官以及具体病灶位置,多见广泛性

的前脑症状,如意识迟钝、抽搐、皮质盲。高血压性脑

病见于严重的高血压以及血压急剧上升的患犬 7

。本

病例在右前侧嗅叶有血块,相关神经学异常只表现

为左侧威胁反应缺失。目前对于高血压血管收缩和

神经炎症是否会引起犬猫神经的退行性病变未有完

整的了解。急性的神经并发症以局灶性血管性卒中、

前庭疾病、神经 - 眼现象、弥散性前脑症状为特征。

高血压靶器官受损所引起的临床症状和实验室检查

将有助于诊断,如前房出血、视网膜脱落(特别是

猫)、肾脏生物学指标、心脏功能评估等。而高血压引

起的脑部损伤最可靠的诊断工具为磁共振成像技

术。通常高血压脑病可见双侧脑白质非对称性 T2-W

高信号,特别是在顶叶和枕叶区域。另外可见 T2 高

信号缺血灶或出血灶 6

本病例的磁共振影像除了在右侧嗅叶有出血灶

和血管性水肿表现以外,还可见脑白质病变。脑白质

病(Leukoencephalopathy)包括多种中枢神经系统疾

病,根 据 病 因,可 进 一 步 分 为 脑 白 质 营 养 不 良

(leukodystrophy)与 髓 鞘 形 成 不 足(hypomyelination)8。脑白质营养不良是以髓磷脂的生成与储备的

紊乱为特征的非炎性对称性脑部病变,髓鞘形成不足

以髓磷脂的完全丢失、髓磷脂的异常蓄积或生理性髓

磷脂不足为特征 9

。脑白质病变的鉴别诊断包括脱髓

鞘性脑病,脑白质变性,代谢性 / 中毒性 / 营养性疾病,

炎症性疾病等。获得性脑白质病与毒素的接触相关,

如六氯化苯、异烟肼、苯乙肼、溴鼠胺。遗传性脑白质

病则常见于年轻纯种犬,如金毛巡回猎犬、魏玛猎狗、

边境㹴10。病毒性感染(如细小病毒)、营养性因素(饲

喂受辐射日粮)也与脑白质病有关联 11,12, 13。

高血压性脑病的治疗与预后

高血压脑病需要紧急和激进的治疗,并且进行

重症监护。首要目的是控制颅内压、高血压和维持

脑部灌注。对于慢性高血压病患,脑部和肾脏的血

管自我调节已适应长期高血压状态;因此快速的降

血压治疗可能会引起严重的脑部低灌注,从而使颅

内压进一步升高。根据 ACVIM 共识,恰当的降血压

方案为,第一个小时降低收缩压约 10%,随后每小

时降低 15%,逐渐降低至目标血压 14。根据部分犬

猫高血压性脑病的病例分析,对肾性高血压和不明

原因性高血 压 的 病 患 经 验 性 使 用氨 氯 地平(0.1

mg/kg PO q 12 h)可避免低血压并发症,犬可结合

血管紧张素转化酶抑制剂依那普利(0.5 mg/kg PO

q 24 h),所有病患在 72 小时内临床症状得到改善,

并且回复至正常的神经学状态。在控制颅内压和脑

部水肿时,需要使用利尿剂和高渗药物,需小心血

压短暂升高的可能 6

25-45% PRES 病人会出现持续的 MRI 病灶,

10-25% 病人存在持续性的神经功能缺失 (Heo et al.

2016),犬猫高血压脑病的预后相对乐观,但目前仍

缺乏系统全面的研究,也尚未有一个研究数据充足

的治疗方案 6

肾上腺皮质机能亢进

肾上腺皮质机能亢进(HAC)是犬最常见的内分

泌疾病之一。一项英国对 21 万犬的流行病学调查研

究显示,HAC 发病率为 0.28%15,多见于 6 岁以上,雌

性犬(58-75%)。常见的临床症状包括多饮多尿、脱

毛、腹围增大、肝脏肿大、多食、肥胖、嗜睡、肌肉无力。

21-86% 犬出现高血压。血液学检查可见红细胞增多、

淋巴细胞减少、中性粒细胞减少、嗜酸性粒细胞减少、

单核细胞增多;肌酐、ALP、ALT、胆固醇、血糖升高等。

HAC 的诊断较有挑战性,且目前尚未有诊断的统一标

准。肾上腺功能测试包括尿液可的松与肌酐比、低剂

量地塞米松抑制试验(LDDST)、促肾上腺皮质激素

(ACTH)刺激试验 16,17。诊断了 HAC 后需要鉴别是垂

体依赖型肾上腺皮质机能亢进(PDH)还是功能性肾

上腺皮质肿瘤(AT)。本病例结合基本信息、临床症状

和 LDDST 结果较符合 PDH。

本文从病史调查、神经学检查、血液学检查、影像

学检查等多方面对一例犬肾上腺皮质机能亢进伴发

高血压脑病进行分析,并且对抽搐的鉴别诊断和高血

压性脑病进行了讨论。当病患抽搐发作时,应对颅内

因素和颅外因素进行排查;出现急性神经症状伴发

高血压时,应考虑高血压性脑病,且寻找潜在病因从

而进行治疗。

参考文献:

[1]Bowman C A, Witham A, Tyrrell D, et al. Magnetic resonance imaging appearance of hypertensive encephalopathy in

a dog[J]. Irish Veterinary Journal, 2015, 68(1): 1-5.

[2]Liman T G , Bohner G , Heuschmann P U , et al. The

clinical and radiological spectrum of posterior reversible

encephalopathy syndrome: the retrospective Berlin PRES

study[J]. Journal of Neurology, 2012, 259(1):155-164.

[3]Schneider J P , Krohmer S , A Günther, et al. Cerebral

lesions in acute arterial hypertension: the characteristic MRI in

hypertensive encephalopathy.[J]. Rofo, 2006.178(6): 618-626.

[4] 戴世鹏 , 庞军 , 戴景儒 . 高血压脑病的 MRI 表现及鉴别

诊断 [J]. 磁共振成像 , 2014, 5(1):4.

[5]Gasparini S , Ferlazzo E , Sueri C , et al. Hypertension,

seizures, and epilepsy: a review on pathophysiology and management[J]. Neurological Sciences, 2019�1-9.

[6]Elliott J , Syme H M , Jepson R E . Hypertension in the

Dog and Cat[M]. 2020.

[7]O’ Neill J, Kent M, Glass EN, et al. Clinicopathologic and

MRI characteristics of presumptive hypertensive encephalopathy in two cats and two dogs. J Am Anim Hosp Assoc 2013

Nov-Dec;49(6):412-20.

[8]Strk T , Nessler J , Anderegg L , et al. TSEN54 missense

variant in Standard Schnauzers with leukodystrophy[J]. PLoS

Genetics, 2019, 15(10):e1008411.

[9]Schaudien D , Polizopoulou Z , Koutinas A , et al. Leukoencephalopathy Associated with Parvovirus Infection in

Cretan Hound Puppies[J]. Journal of Clinical Microbiology,

2010, 48(9):3169.

[10]JA García, Pumarola M , Romero A , et al. Spongiform

leukoencephalopathy in an adult mixed breed female dog[J].

Brazilian Journal of Veterinary Pathology, 2020, 13(2).

[11]Schaudien D, Polizopoulou Z, Koutinas A, et al. Leukoencephalopathy associated with parvovirus infection in Cretan

hound puppies[J]. Journal of clinical microbiology, 2010, 48(9):

3169-3175.

[12]van den Ingh T S, Grinwis G C M, Corbee R J. Leukoencephalomyelopathy in cats linked to abnormal fatty acid

composition of the white matter of the spinal cord and of irradiated dry cat food[J]. Journal of animal physiology and animal

nutrition, 2019, 103(5): 1556-1563.

[13]Hirschvogel K, Matiasek K, Flatz K, et al. Magnetic

resonance imaging and genetic investigation of a case of rottweiler leukoencephalomyelopathy[J]. BMC veterinary research,

2013, 9(1): 1-8.

[14]Acierno M J , Brown S , Coleman A E , et al. ACVIM

consensus statement: Guidelines for the identification, evaluation, and management of systemic hypertension in dogs and

cats[J]. Journal of Veterinary Internal Medicine, 2018, 32.

[15]D, G, O'Neil, et al. Epidemiology of hyperadrenocorticism among 210,824 dogs attending primary-care veterinary

practices in the UK from 2009 to 2014[J]. Journal of Small

Animal Practice, 2016, 57(7):365–373.

[16]Bennaim M , Shiel R E , Mooney C T . Diagnosis of

spontaneous hyperadrenocorticism in dogs. Part 1: Pathophysiology, aetiology, clinical and clinicopathological features[J]. The

Veterinary Journal, 2019, 252�105342.

[17]Bennaim M , Shiel R E , Mooney C T . Diagnosis of

spontaneous hyperadrenocorticism in dogs. Part 2: Adrenal

function testing and differentiating tests[J]. The Veterinary

Journal, 2019, 252�105343.

百万用户使用云展网进行创意画册设计制作,只要您有文档,即可一键上传,自动生成链接和二维码(独立电子书),支持分享到微信和网站!
收藏
转发
下载
免费制作
其他案例
更多案例
免费制作
x
{{item.desc}}
下载
{{item.title}}
{{toast}}