吉林农业大学学报 2023 年 12 月
Journal of Jilin Agricultural University 2023,December
disruption of this gene[J]. The Plant Cell,1995,7(2):
183-193.
[32] Liu Z M, Kolattukudy P E. Identification of a gene product in⁃
duced by hard-surface contact of Colletotrichum gloeosporioi⁃
des conidia as a ubiquitin-conjugating enzyme by yeast
complementation[J]. Journal of Bacteriology,1998,180
(14):3592-3597.
[33] Kim Y K, Kawano T, Li D, et al. A mitogen-activated pro⁃
tein kinase kinase required for induction of cytokinesis and
appressorium formation by host signals in the conidia of Colle⁃
totrichum gloeosporioides[J]. The Plant Cell,2000,12(8):
1331-1343.
[34] Barhoom S, Kupiec M, Zhao X H, et al. Functional charac⁃
terization of CgCTR2, a putative vacuole copper transporter
that is involved in germination and pathogenicity in Colletotri⁃
chum gloeosporioides[J]. Eukaryotic Cell,2008,7(7):
1098-1108.
[35] Yong H Y, Bakar F D A, Illias R M, et al. Cgl-SLT2 is re⁃
quired for appressorium formation, sporulation and pathoge⁃
nicity in Colletotrichum gloeosporioides[J]. Brazilian Journal
of Microbiology,2013,44(4):1241-1250.
[36] Shnaiderman C, Miyara I, Kobiler I, et al. Differential acti⁃
vation of ammonium transporters during the accumulation of
ammonia by Colletotrichum gloeosporioides and its effect on
appressoria formation and pathogenicity[J]. Molecular PlantMicrobe Interactions,2013,26(3):345-355.
[37] Wu J Y, Ji Z R, Wang N, et al. Identification of
conidiogenesis-associated genes in Colletotrichum gloeosporioi⁃
des by Agrobacterium tumefaciens-mediated transformation[J].
Current Microbiology,2016,73(6):802-810.
[38] Xu X, Wang Y L, Tian C M, et al. The Colletotrichum gloeo⁃
sporioides RhoB regulates cAMP and stress response path⁃
ways and is required for pathogenesis[J]. Fungal Genetics
and Biology,2016,96:12-24.
[39] Bi F C, Ment D, Luria N, et al. Mutation of AREA affects
growth, sporulation, nitrogen regulation, and pathogenicity
in Colletotrichum gloeosporioides[J]. Fungal Genetics and Bi⁃
ology,2017,99:29-39.
[40] 吴曼莉,李晓宇,张楠,等. 胶孢炭疽菌CgRGS2基因的克
隆及生物学功能[J]. 微生物学报,2017,57(1):66-76.
[41] 吴曼莉,胡坚,张楠,等. CgRGS7调控胶孢炭疽菌分生孢
子产量、附着胞形成及致病性[J]. 西南农业学报,2017,
30(8):1802-1807.
[42] 张楠,柳志强,吴曼莉,等. 胶孢炭疽菌CgSho1基因的克
隆与功能分析[J]. 植物病理学报,2017,47(1):40-49.
[43] Zhou Z S, Wu J Y, Wang M Y, et al. ABC protein CgABCF2
is
required for asexual and sexual development, appressorial for⁃
mation and plant infection in Colletotrichum gloeosporioides[J].
Microbial Pathogenesis,2017,110:85-92.
[44] Liu Z Q, Wu M L, Ke Z J, et al. Functional analysis of a
regulator of G-protein signaling CgRGS1 in the rubber tree
anthracnose fungus Colletotrichum gloeosporioides[J]. Ar⁃
chives of Microbiology,2018,200(3):391-400.
[45] 徐爽,柯智健,张凯,等 . 胶孢炭疽菌 G 蛋白信号调控因
子 CgRGS3 的生物学功能[J]. 植物保护学报,2018,45
(4):827-835.
[46] 李鸿鹏 . 芒果炭疽病菌果胶裂解酶基因克隆与表达分析
及Cgpel3致病功能初探[D]. 海口:海南大学,2019.
[47] 苏初连 . 胶孢炭疽菌泛素结合酶 CgUBC 家族基因的分离
与功能分析[D]. 海口:海南大学,2019.
[48] 卢梦瑶 . 芒果胶孢炭疽菌中 CgAAP 基因功能研究[D]. 海
口:海南大学,2020.
[49] 夏杨 . 胶孢炭疽菌多聚类泛素基因 CgUbl4 的功能研究
[D]. 海口:海南大学,2020.
[50] 梁 晨 . 橡 胶 树 胶 孢 炭 疽 菌 特 异 效 应 蛋 白 候 选 基 因
CgNSPG1 和 CgNSPG3 功 能 分 析[D]. 海 口:海 南 大 学,
2020.
[51] 钟昌开 . 杧果炭疽病菌酶基因 Cglac3 和 Cglac7 表达及致
病功能分析[D]. 海口:海南大学,2020.
[52] Liang C, Zhang B, Zhou Y, et al. CgNPG1 as a novel patho⁃
genic gene of Colletotrichum gloeosporioides from Hevea brasil⁃
iensis in mycelial growth, conidiation, and the invasive struc⁃
tures development[J]. Frontiers in Microbiology,2021,12:
629387.
[53] Wang X L, Lu D X, Tian C M. Mucin Msb2 cooperates with
the transmembrane protein Sho1 in various plant surface sig⁃
nal sensing and pathogenic processes in the poplar anthrac⁃
nose fungus Colletotrichum gloeosporioides[J]. Molecular
Plant Pathology,2021,22(12):1553-1573.
[54] Pan Y T, Li L W, Yang J Y, et al. Involvement of protein ki⁃
nase CgSat4 in potassium uptake, cation tolerance, and full
virulence in Colletotrichum gloeosporioides[J]. Frontiers in
Plant Science,2022,13:773898.
[55] Liu N, Wang W F, He C Z, et al. NADPH oxidases play a
role in pathogenicity via the regulation of F-actin organiza⁃
tion in Colletotrichum gloeosporioides[J]. Frontiers in Cellu⁃
lar and Infection Microbiology,2022,12:845133.
[56] Wang X L, Xu X, Liang Y M, et al. A Cdc42 homolog in
Colletotrichum gloeosporioides regulates morphological devel⁃
opment and is required for ROS-mediated plant infection[J].
Current Genetics,2018,64(5):1153-1169.
[57] Zhang Y Z, Li B, Pan Y T, et al. Protein phosphatase
CgPpz1 regulates potassium uptake, stress responses, and
plant infection in Colletotrichum gloeosporioides[J]. Phytopa⁃
thology,2022,112(4):820-829.
[58] Zhang Y, An B, Wang W F, et al. Actin-bundling protein
fimbrin regulates pathogenicity via organizing F-actin dynam⁃
ics during appressorium development in Colletotrichum gloeo⁃
sporioides[J]. Molecular Plant Pathology,2022,23(10):
1472-1486.
[59] Huang Y M, Li B, Yin J, et al. CgGCS, encoding a glucosyl⁃
ceramide synthase, is required for growth, conidiation and
pathogenicity in Colletotrichum gloeosporioides[J]. Frontiers
in Microbiology,2019,10:1016.
[60] Yuan Q F, Chen M J, Yan Y Q, et al. ChSte7 is required for
vegetative growth and various plant infection processes in Col⁃
letotrichum higginsianum[J]. BioMed Research Interna⁃
tional,2016,2016:7496569.
[61] Schmidpeter J, Dahl M, Hofmann J, et al. ChMob2 binds to
ChCbk1 and promotes virulence and conidiation of the fungal
734