http:∥xuebao.gxnu.edu.cn
[4] SUN Y G, MAYERS B T, XIA Y N. Template-engaged replacement reaction: a one-step approach to the large-scale
synthesis of metal nanostructures with hollow interiors[J]. Nano Letters, 2002, 2(5): 481-485.
[5] LIU G L, FENG D Q, ZHENG W J, et al. An anti-galvanic replacement reaction of DNA templated silver nanoclusters
monitored by the light-scattering technique[J]. Chemical Communications, 2013, 49: 7941-7943.
[6] BI Y P, YE J H. Heteroepitaxial growth of platinum nanocrystals on AgCl nanotubes via galvanic replacement reaction[J].
Chemical Communications, 2010, 46: 1532-1534.
[7] NETZER N L, TANAKA Z, CHEN B, et al. Tailoring the SERS enhancement mechanisms of silver nanowire LangmuirBlodgett films via galvanic replacement reaction[J]. Journal of Applied Physics. 2013, 117: 16187-16194.
[8] WU H X, RONG M C, MA Y, et al. PVP-mediated galvanic replacement growth of AgNPs on copper foil for SERS sensing
[J]. Micro and Nano Letters, 2020, 15: 590-594.
[9] JIANG Z L, LI C N, LIU Y Y, et al. A sensitive galvanic replacement reaction-SERS method for Au(III) with Victoria blue
B molecular probes in silver nanosol substrate[J]. Sensors and Actuators B: Chemical, 2017, 251: 404-409.
[10] YANG H X, HOU J G, WANG Z H, et al. Porous PtAg nanoshells/ reduced graphene oxide based biosensors for lowpotential detection of NADH[J]. Microchimica Acta, 2020, 187: 544.
[11] LI J B, WANG J H, ZHANG X X, et al. Highly selective detection of epidermal growth factor receptor by multifunctional
gold-nanoparticle-based resonance Rayleigh scattering method[J]. Sensors and Actuators B: Chemical, 2018, 273:
1300-1306.
[12] MA C J, ZHANG W A, SU Z Q, et al. Resonance Rayleigh scattering method for the determination of chitosan using
erythrosine B as a probe and PVA as sensitization[J]. Food Chemistry, 2018, 239: 126-131.
[13] LIANG A H, WANG Y H, WEN G Q, et al. A silver nanorod resonance Rayleigh scattering-energy transfer analytical
platform for trace tea polyphenols[J]. Food Chemistry, 2016, 197(Part A): 395-399.
[14] 李重宁, 潘宏程, 刘庆业, 等. 多肽探针结合纳米银催化反应-吸收测定 HCG[ J]. 广西师范大学学报(自然科学
版), 2017, 35(4): 91-97.
[15] WANG H L, LIANG A H, WEN G Q, et al. A simple SPR absorption method for ultratrace Pb
2+
based on DNA zymeCOFPd nanocatalysis of Ni-P alloy reaction[J]. Sensors and Actuators B: Chemical, 2021, 330: 129381-129387.
[16] ZHANG Z H, LEI K N, LI C N, et al. A new and facile nanosilver SPR colored method for ultratrace arsenic based on
aptamer regulation of Au-doped carbon dot catalytic amplification[J]. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 2020, 232: 118174-118182.
[17] LI C P, NIU Q F, WANG J G, et al. Bithiophene-based fluorescent sensor for highly sensitive and ultrarapid detection of
Hg
2+
in water, seafood, urine and live cells[ J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,
2020, 233: 118208-118214.
[18] CHEN C G, VIJAY N, THIRUMALAIYASAN N, et al. Coumarin-based Hg
2+
fluorescent probe: fluorescence turn-on
detection for Hg
2+
bioimaging in living cells and zebrafish[ J]. Spectrochimica Acta Part A: Molecular and Biomolecular
Spectroscopy, 2019, 219: 135-140.
[19] TAN L L, CHEN Z B, ZHANG C, et al. Colorimetric detection of Hg
2+
based on the growth of aptamer-coated AuNPs: the
effect of prolonging aptamer strands[J]. Small, 2017, 13(14): 1603370-1603376.
[20] XING H K, XU J K, ZHU X F, et al. A new electrochemical sensor based on carboimidazole grafted reduced graphene
oxide for simultaneous detection of Hg
2+
and Pb
2+
[J]. Journal of Electroanalytical Chemistry, 2016, 782: 250-255.
[21] HU X, WANG W, HUANG Y M. Copper nanocluster-based fluorescent probe for sensitive and selective detection of Hg
2+
in
water and food stuff[J]. Talanta, 2016, 154: 409-415.
[22] REN W, ZHANG Y, CHEN H G, et al. Ultrasensitive label-free resonance Rayleigh scattering aptasensor for Hg
2+
using
Hg
2+
-triggered exonuclease III-assisted target recycling and growth of G-wires for signal amplification[J]. Analytical
Chemistry, 2016, 88(2): 1385-1390.
[23] ZHANG S T, ZHANG D X, ZHANG X H, et al. Ultratrace naked-eye colorimetric detection of Hg
2+
in wastewater and
serum utilizing mercury-stimulated peroxidase mimetic activity of reduced graphene oxide-PEI-Pd nanohybrids[J].
Analytical Chemistry, 2017, 89(6): 3538-3544.
[24] TAN F, CONG L C, SAUCEDO N M, et al. An electrochemically reduced graphene oxide chemiresistive sensor for
sensitive detection of Hg
2+
ion in water samples[J]. Journal of Hazardous Materials, 2016, 320: 226-233.
147