极T代谢磁共振全球科研集锦
37
Biomedical Applications of HP 13C MRI
Epub ahead of print 15
77. Park I, Bok R, Ozawa T, et al. Detection of early response
to temozolomide treatment in brain tumors using
hyperpolarized 13C MR metabolic imaging. J Magn Reson
Imaging 2011; 33:1284–1290.
78. Dutta P, Le A, Vander Jagt DL, et al. Evaluation of LDH-A
and glutaminase inhibition in vivo by hyperpolarized
13C-pyruvate magnetic resonance spectroscopy of tumors.
Cancer Res 2013; 73:4190–4195.
79. Witney TH, Kettunen MI, Day SE, et al. A comparison
between radiolabeled fluorodeoxyglucose uptake and
hyperpolarized 13C-labeled pyruvate utilization as methods
for detecting tumor response to treatment. Neoplasia
2009; 11:574–582.
80. Cunningham CH, Lau JYC, Chen AP, et al. Hyperpolarized
13C metabolic MRI of the human heart. Circ Res 2016;
119:1177–1182.
81. Grist JT, McLean MA, Riemer F, et al. Quantifying normal
human brain metabolism using hyperpolarized [1–13C]
pyruvate and magnetic resonance imaging. Neuroimage
2019; 189:171–179.
82. Aggarwal R, Vigneron DB, Kurhanewicz J. Hyperpolarized
1-[13C]-pyruvate Magnetic resonance imaging detects an
early metabolic response to androgen ablation therapy in
prostate cancer. Eur Urol 2017; 72:1028–1029.
83. Zhu Z, Marco-Rius I, Ohliger MA, et al. Hyperpolarized
13C dynamic breath-held molecular imaging to detect
targeted therapy response in patients with liver metastases.
In: International Society for Magnetic Resonance in
Medicine, Hawaii. 2017; p. 1115.
84. Park I, Larson PEZ, Gordon JW, et al. Development of
methods and feasibility of using hyperpolarized carbon-13
imaging data for evaluating brain metabolism in patient
studies. Magn Reson Med 2018; 80:864–873.
85. Miloushev VZ, Granlund KL, Boltyanskiy R, et al. Metabolic
imaging of the human brain with hyperpolarized 13C
pyruvate demonstrates 13C Lactate production in brain
tumor patients. Cancer Res 2018; 78:3755–3760.
86. Woitek R, McLean MA, Grist JT, et al. Imaging metabolic
heterogeneity in breast cancer using hyperpolarized
13C-MRSI. In: International Society for Magnetic Resonance
in Medicine, Montreal. 2019; p. 0258.
87. Villanueva-Mayer J, Autry A, Gordon J, et al. Serial HP [1-13C]
pyruvate and 1H metabolic imaging in multiply recurrent
high-grade glioma. In: International Society for Magnetic
Resonance in Medicine, Montreal. 2019; p. 2868.
88. Autry AW, Gordon JW, Chen HY, et al. Serial characterization
of HP [1-13C]pyruvate metabolism in the brains of patients
with glioma and healthy controls. In: International Society for
Magnetic Resonance in Medicine, Montreal. 2019; p. 0860.
89. Gutte H, Hansen AE, Larsen MM, et al. Simultaneous
hyperpolarized 13C-pyruvate MRI and 18F-FDG PET (HyperPET)
in 10 dogs with cancer. J Nucl Med 2015; 56:1786–1792.
90. Gutte H, Hansen AE, Henriksen ST, et al. Simultaneous
hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in
cancer (hyperPET): feasibility of a new imaging concept
using a clinical PET/MRI scanner. Am J Nucl Med Mol
Imaging 2015; 5:38–45.
91. Daniels CJ, McLean MA, Schulte RF, et al. A comparison of
quantitative methods for clinical imaging with hyperpolarized
(13)C-pyruvate. NMR Biomed 2016; 29:387–399.
92. Harrison C, Yang C, Jindal A, et al. Comparison of kinetic
models for analysis of pyruvate-to-lactate exchange
by hyperpolarized 13C NMR. NMR Biomed 2012; 25:
1286–1294.
93. Harris T, Eliyahu G, Frydman L, Degani H. Kinetics of
hyperpolarized 13C1-pyruvate transport and metabolism
in living human breast cancer cells. Proc Natl Acad Sci
U S A 2009; 106:18131–18136.
94. Keshari KR, Wilson DM. Chemistry and biochemistry of 13C
hyperpolarized magnetic resonance using dynamic nuclear
polarization. Chem Soc Rev 2014; 43:1627–1659.
95. Schroeder MA, Lau AZ, Chen AP, et al. Hyperpolarized
13C magnetic resonance reveals early- and late-onset
changes to in vivo pyruvate metabolism in the failing
heart. Eur J Heart Fail 2013; 15:130–140.
96. Hu S, Yoshihara HAI, Bok R, et al. Use of hyperpolarized
[1-13C]pyruvate and [2-13C]pyruvate to probe the effects
of the anticancer agent dichloroacetate on mitochondrial
metabolism in vivo in the normal rat. Magn Reson
Imaging 2012; 30:1367–1372.
97. Chung BT, Chen HY, Gordon J, et al. First hyperpolarized
[2-13C]pyruvate MR studies of human brain metabolism.
J Magn Reson 2019; 309:106617.
98. Johansson E, Månsson S, Wirestam R, et al. Cerebral
perfusion assessment by bolus tracking using hyperpolarized 13C. Magn Reson Med 2004; 51:464–472.
99. von Morze C, Larson PEZ, Hu S, et al. Imaging of blood
flow using hyperpolarized [13C]urea in preclinical cancer
models. J Magn Reson Imaging 2011; 33:692–697.
100. Lau AZ, Miller JJ, Robson MD, Tyler DJ. Simultaneous
assessment of cardiac metabolism and perfusion using
copolarized [1-13C]pyruvate and 13C-urea. Magn Reson
Med 2017; 77:151–158.
101. Reed GD, von Morze C, Bok R, et al. High resolution 13C
MRI with hyperpolarized urea: in vivo T2 mapping and 15N
labeling effects. IEEE Trans Med Imaging 2014; 33:362–371.
102. Laustsen C, Stokholm Nørlinger T, Christoffer Hansen
D, et al. Hyperpolarized 13C urea relaxation mechanism
reveals renal changes in diabetic nephropathy. Magn
Reson Med. 2016; 75:515–518.
103. Gallagher FA, Kettunen MI, Hu DE, et al. Production
of hyperpolarized [1,4-13C2]malate from [1,4-13C2]
fumarate is a marker of cell necrosis and treatment
response in tumors. Proc Natl Acad Sci U S A 2009; 106:
19801–19806.
104. Miller JJ, Lau AZ, Nielsen PM, et al. Hyperpolarized
[1,4-13C2]fumarate enables magnetic resonance-based
imaging of myocardial necrosis. JACC Cardiovasc
Imaging 2018; 11:1594–1606.
105. Clatworthy MR, Kettunen MI, Hu DE, et al. Magnetic
resonance imaging with hyperpolarized [1,4-(13)C2]fumarate allows detection of early renal acute tubular necrosis.
Proc Natl Acad Sci U S A 2012; 109:13374–13379.
106. Witney TH, Kettunen MI, Hu DE, et al. Detecting treatment
response in a model of human breast adenocarcinoma
using hyperpolarised [1-13C]pyruvate and [1,4-13C2]
fumarate. Br J Cancer 2010; 103:1400–1406.
107. Eldirdiri A, Clemmensen A, Bowen S, Kjær A, ArdenkjærLarsen JH. Simultaneous imaging of hyperpolarized
[1,4-13C2]fumarate, [1-13C]pyruvate and 18F-FDG in a rat