极T代谢磁共振全球科研集锦
78
was 7 mm and the through-plane resolution was 7 to 15 mm, with a
progressive flip angle and TE/TR of 3/85 to 125 ms. Variations of the
in-plane slice thickness, number of phase encodes, and spatial resolution were driven by differences in the size of the prostate and the spatial
extent of the region of tumor. The acquisition time was 8 to 12 s, and
it started 25 to 33 s after the end of the injection.
Data analysis
The analysis of the 13C MR data used specialized software developed
in our laboratory (39). Arrays of spectra were obtained by apodizing
the raw data with a 10-Hz Lorentzian function in the time domain
and performing a Fourier transform. For data with echo planar localization, signals from the positive and negative gradient lobes were separately reconstructed for each trajectory with regridding of samples on
the ramps. The spectral arrays were then zero- and first-order phasecorrected. Quantification of individual spectra used automatic phasing,
baseline subtraction, and frequency correction. The heights and areas
of spectral peaks were estimated and used to generate metabolite images and/or curves of the time course of changes in [1-13C]lactate and
[1-13C]pyruvate.
The spectral arrays and metabolite images were directly correlated
with anatomic images that were acquired within the same examination. For comparison purposes, regions of prostate cancer were identified as areas with concordant positive TRUS-guided biopsy and MRI
abnormality within the same sextant of the prostate. Visual comparisons of the locations of regions with elevated lactate/pyruvate on the
13C images were made with the results from the MR staging examination using anatomic images from the two studies as a reference to see
whether similar regions were identified as having abnormalities. For
voxels where the SNR of the dynamic data was sufficient, the curves
of lactate and pyruvate were fit with the two-compartment model that
was developed and applied in previous preclinical studies (22).
SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/5/198/198ra108/DC1
Methods
Fig. S1. Results from the MR staging examination for a patient with a large volume of bilateral
cancer.
Table S1. Summary of information about individual patients.
Table S2. Number of adverse events that were observed and their grade as defined by criteria
from the National Cancer Institute.
REFERENCES AND NOTES
1. R. Siegel, D. Naishadham, A. Jemal, Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29
(2012).
2. M. Han, A. W. Partin, S. Piantadosi, J. I. Epstein, P. C. Walsh, Era specific biochemical recurrencefree survival following radical prostatectomy for clinically localized prostate cancer. J. Urol.
166, 416–419 (2001).
3. J. E. McNeal, D. G. Bostwick, R. A. Kindrachuk, E. A. Redwine, F. S. Freiha, T. A. Stamey,
Patterns of progression in prostate cancer. Lancet 1, 60–63 (1986).
4. M. R. Cooperberg, P. R. Carroll, L. Klotz, Active surveillance for prostate cancer: Progress
and promise. J. Clin. Oncol. 29, 3669–3676 (2011).
5. J. T. Wei, R. L. Dunn, H. M. Sandler, P. W. McLaughlin, J. E. Montie, M. S. Litwin, L. Nyquist,
M. G. Sanda, Comprehensive comparison of health-related quality of life after contemporary
therapies for localized prostate cancer. J. Clin. Oncol. 20, 557–566 (2002).
6. J. E. Johansson, O. Andrén, S. O. Andersson, P. W. Dickman, L. Holmberg, A. Magnuson,
H. O. Adami, Natural history of early, localized prostate cancer. JAMA 291, 2713–2719
(2004).
7. A. Bill-Axelson, L. Holmberg, M. Ruutu, M. Häggman, S. O. Andersson, S. Bratell, A. Spångberg,
C. Busch, S. Nordling, H. Garmo, J. Palmgren, H. O. Adami, B. J. Norlén, J. E. Johansson;
Scandinavian Prostate Cancer Group Study No. 4, Radical prostatectomy versus watchful
waiting in early prostate cancer. N. Engl. J. Med. 352, 1977–1984 (2005).
8. S. S. Mehta, D. P. Lubeck, N. Sadetsky, D. J. Pasta, P. R. Carroll, Patterns of secondary cancer
treatment for biochemical failure following radical prostatectomy: Data from CaPSURE.
J. Urol. 171, 215–219 (2004).
9. G. J. Kelloff, P. Choyke, D. S. Coffey; Prostate Cancer Imaging Working Group, Challenges in
clinical prostate cancer: Role of imaging. AJR Am. J. Roentgenol. 192, 1455–1470 (2009).
10. J. Kurhanewicz, D. B. Vigneron, Advances in MR spectroscopy of the prostate. Magn. Reson.
Imaging Clin. N. Am. 16, 697–710 (2008).
11. J. C. Weinreb, J. D. Blume, F. V. Coakley, T. M. Wheeler, J. B. Cormack, C. K. Sotto, H. Cho,
A. Kawashima, C. M. Tempany-Afdhal, K. J. Macura, M. Rosen, S. R. Gerst, J. Kurhanewicz,
Prostate cancer: Sextant localization at MR imaging and MR spectroscopic imaging
before prostatectomy—Results of ACRIN prospective multi-institutional clinicopathologic
study. Radiology 251, 122–133 (2009).
12. J. M. Beauregard, S. G. Williams, T. R. Degrado, P. Roselt, R. J. Hicks, Pilot comparison of
F-fluorocholine and F-fluorodeoxyglucose PET/CT with conventional imaging in prostate
cancer. J. Med. Imaging Radiat. Oncol. 54, 325–332 (2010).
13. J. H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M. H. Lerche, R. Servin,
M. Thaning, K. Golman. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR.
Proc. Natl. Acad. Sci. U.S.A. 100, 10158–10163 (2003).
14. K. Golman, R. in ‘t Zandt, M. Thaning, Real-time metabolic imaging. Proc. Natl. Acad. Sci. U.S.A.
103, 11270–11275 (2006).
15. K. Golman, J. S. Petersson, Metabolic imaging and other applications of hyperpolarized 13C1
. Acad. Radiol. 13, 932–942 (2006).
16. A. P. Chen, M. J. Albers, C. H. Cunningham, S. J. Kohler, Y. F. Yen, R. E. Hurd, J. Tropp, R. Bok,
J. M. Pauly, S. J. Nelson, J. Kurhanewicz, D. B. Vigneron, Hyperpolarized C-13 spectroscopic
imaging of the TRAMP mouse at 3T—Initial experience. Magn. Reson. Med. 58, 1099–1106
(2007).
17. K. R. Keshari, R. Sriram, M. Van Criekinge, D. M. Wilson, Z. J. Wang, D. B. Vigneron, D. M. Peehl,
J. Kurhanewicz, Metabolic reprogramming and validation of hyperpolarized 13C lactate as a
prostate cancer biomarker using a human prostate tissue slice culture bioreactor. Prostate
73, 1171–1181 (2013).
18. M. J. Albers, R. Bok, A. P. Chen, C. H. Cunningham, M. L. Zierhut, V. Y. Zhang, S. J. Kohler,
J. Tropp, R. E. Hurd, Y. F. Yen, S. J. Nelson, D. B. Vigneron, J. Kurhanewicz, Hyperpolarized
13C lactate, pyruvate, and alanine: Noninvasive biomarkers for prostate cancer detection and
grading. Cancer Res. 68, 8607–8615 (2008).
19. H. Dafni, P. E. Larson, S. Hu, H. A. Yoshihara, C. S. Ward, H. S. Venkatesh, C. Wang, X. Zhang,
D. B. Vigneron, S. M. Ronen, Hyperpolarized 13C spectroscopic imaging informs on hypoxiainducible factor-1 and myc activity downstream of platelet-derived growth factor receptor.
Cancer Res. 70, 7400–7410 (2010).
20. S. E. Day, M. I. Kettunen, F. A. Gallagher, D. E. Hu, M. Lerche, J. Wolber, K. Golman,
J. H. Ardenkjaer-Larsen, K. M. Brindle, Detecting tumor response to treatment using
hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 13,
1382–1387 (2007).
21. National Cancer Institute, Common Terminology Criteria for Adverse Events (CTCAE) v4.0;
http://ctep.cancer.gov.
22. M. L. Zierhut, Y. F. Yen, A. P. Chen, R. Bok, M. J. Albers, V. Zhang, J. Tropp, I. Park,
D. B. Vigneron, J. Kurhanewicz, R. E. Hurd, S. J. Nelson, Kinetic modeling of hyperpolarized
13C1-pyruvate metabolism in normal rats and TRAMP mice. J. Magn. Reson. 202, 85–92
(2010).
23. J. H. Ardenkjaer-Larsen, A. M. Leach, N. Clarke, J. Urbahn, D. Anderson, T. W. Skloss,
Dynamic nuclear polarization polarizer for sterile use intent. NMR Biomed. 24, 927–932
(2011).
24. S. Hu, P. E. Larson, M. Vancriekinge, A. M. Leach, I. Park, C. Leon, J. Zhou, P. J. Shin, G. Reed,
P. Keselman, C. von Morze, H. Yoshihara, R. A. Bok, S. J. Nelson, J. Kurhanewicz, D. B. Vigneron,
Rapid sequential injections of hyperpolarized [1-13C]pyruvate in vivo using a sub-kelvin, multisample DNP polarizer. Magn. Reson. Imaging 31, 490–496 (2013).
25. S. Hu, A. Balakrishnan, R. A. Bok, B. Anderton, P. E. Larson, S. J. Nelson, J. Kurhanewicz,
D. B. Vigneron, A. Goga, 13C-pyruvate imaging reveals alterations in glycolysis that precede
c-Myc-induced tumor formation and regression. Cell Metab. 14, 131–142 (2011).
26. I. Park, R. Bok, T. Ozawa, J. J. Phillips, C. D. James, D. B. Vigneron, S. M. Ronen, S. J. Nelson,
Detection of early response to temozolomide treatment in brain tumors using hyperpolarized
13C MR metabolic imaging. J. Magn. Reson. Imaging 33, 1284–1290 (2011).
27. B. Pullinger, H. Profka, J. H. Ardenkjaer-Larsen, N. N. Kuzma, S. Kadlecek, R. R. Rizi, Metabolism
of hyperpolarized [1-13C]pyruvate in the isolated perfused rat lung—An ischemia study.
NMR Biomed. 25, 1113–1118 (2012).
28. C. S. Ward, H. S. Venkatesh, M. M. Chaumeil, A. H. Brandes, M. Vancriekinge, H. Dafni,
S. Sukumar, S. J. Nelson, D. B. Vigneron, J. Kurhanewicz, C. D. James, D. A. Haas-Kogan,
S. M. Ronen, Noninvasive detection of target modulation following phosphatidylinositol
3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy. Cancer Res.
70, 1296–1305 (2010).
RESEARCH ARTICLE
www.ScienceTranslationalMedicine.org 14 August 2013 Vol 5 Issue 198 198ra108 9
by guest on March 5, 2018 http://stm.sciencemag.org/ Downloaded from