复合材料科学与工程
impact[J]. Composites Part A: Applied Science and Manufacturingꎬ
2013ꎬ 44: 51 ̄62.
[8] RUSSELL B Pꎬ KARTHIKEYAN Kꎬ DESHPANDE V Sꎬ et al. The
high strain rate response of ultra high molecular ̄weight polyethylene:
From fibre to laminate[J]. International Journal of Impact Engineer ̄
ingꎬ 2013ꎬ 60: 1 ̄9.
[9] ZHANG T Gꎬ SATAPATHY S Sꎬ VARGAS ̄GONZALEZ L Rꎬ et al.
Ballistic impact response of Ultra ̄High ̄Molecular ̄Weight Polyethylene
(UHMWPE)[J]. Composite Structuresꎬ 2015ꎬ 133: 191 ̄201.
[10] NGUYEN L Hꎬ RYAN Sꎬ CMPOERU S Jꎬ et al. The effect of target
thickness on the ballistic performance of ultra high molecular weight
polyethylene composite[J]. International Journal of Impact Engineer ̄
ingꎬ 2015ꎬ 75: 174 ̄183.
[11] ATTWOOD J Pꎬ RUSSELL B Pꎬ WADLEY H N Gꎬ et al. Mecha ̄
nisms of the penetration of ultra ̄high molecular weight polyethylene
composite beams[ J]. International Journal of Impact Engineeringꎬ
2016ꎬ 93: 153 ̄165.
[12] O′MASTA M Rꎬ COMPTON B Gꎬ GAMBLE E Aꎬ et al. Ballistic
impact response of an UHMWPE fiber reinforced laminate encasing
of an aluminum ̄alumina hybrid panel [ J]. International Journal of
Impact Engineeringꎬ 2015ꎬ 86: 131 ̄144.
[13] 李典ꎬ 侯海量ꎬ 朱锡ꎬ 等. 舰船装甲防护结构抗弹道冲击的研
究进展[J]. 中国造船ꎬ 2018ꎬ 59(1): 237 ̄250.
[14] 李典ꎬ 侯海量ꎬ 戴文喜ꎬ 等. 爆炸冲击波和破片联合作用下玻璃
纤维夹芯复合结构毁伤特性实验研究[J]. 兵工学报ꎬ 2017ꎬ 38
(5): 877 ̄885.
[15] ZHANG Rꎬ QIANG L Sꎬ HAN Bꎬ et al. Ballistic performance of
UHMWPE laminated plates and UHMWPE encapsulated aluminum
structures: Numerical simulation[J]. Composite Structuresꎬ 2020ꎬ
252: 112686.
(上接第 33 页)
6 结 论
可扁平输送软管的承压强度取决于织物增强层
的拉伸性能ꎬ而在纱线交叉点产生的应力集中会降
低织物的强度ꎮ 本文通过研究织物结构参数与纱线
交叉点处应力集中程度的关系ꎬ为优化织物增强层
结构ꎬ改善可扁平输送软管的承压性能提供了依据ꎮ
结果表明:斜纹环编织物有限元拉伸模拟结果和拉
伸试验结果基本相符ꎻ织物承受经向拉伸载荷时ꎬ经
纱间距、纬纱细度、纬纱卷曲率大小对交叉点处的应
力集中程度没有明显影响ꎻ织物承受纬向拉伸载荷
时ꎬ经纱间距增大、纬纱变细以及纬纱卷曲率降低可
以使纱线交叉点处的应力分布更加均匀ꎬ提高纱线
力学效率ꎬ纬纱卷曲率大于 4? 1%时ꎬ经纱间距、纬纱
细度以及纬纱卷曲率对交叉点处的应力集中程度影
响较大ꎮ
参考文献
[1] 谭凤旭ꎬ 杨立明. 高技术在外军油料补给装备上的应用[ J]. 现
代军事ꎬ 2000(7): 22 ̄23.
[2] 黄忠耀ꎬ 蔡利海ꎬ 蔡宝祥ꎬ 等. 一种多层筒形织物的设计方法:
2014104441910[P]. 2015 ̄01 ̄07.
[3] COIMBRA R Nꎬ OTERO M. A continuous process for the production
of a fabric reinforced polymeric matrix [ J]. Journal of Reinforced
Plastics and Compositesꎬ 2015ꎬ 34(20): 1662 ̄1672.
[4] 孙训方. 材料力学 ̄Ⅰ[M]. 北京: 高等教育出版社ꎬ 2009.
[5] 刘倩楠ꎬ 张涵ꎬ 刘新金ꎬ 等. 基于 ABAQUS 的三原组织机织物拉
伸力学性能模拟[J]. 纺织学报ꎬ 2019ꎬ 40(4): 44 ̄50.
[ 6] 李瑛慧ꎬ 谢春萍ꎬ 刘新金. 三原组织织物拉伸力学性能有限元仿
真[J]. 纺织学报ꎬ 2017ꎬ 38(11): 41 ̄47.
[7] CARVELLI Vꎬ CORAZZA Cꎬ POGGI C. Mechanical modelling of
monofilament technical textiles[J]. Computational Materials Scienceꎬ
2008ꎬ 42(4): 679 ̄691.
[8] SU Xꎬ LIU X. Dynamic tensile process of blended fabric using finite
element method [ J]. International Journal of Clothing Science and
Technologyꎬ 2020ꎬ 32(5): 707 ̄724.
[9] CHEN Sꎬ TIAN Xꎬ HUA Tꎬ et al. Exploring the relationship between
applied fabric strain and resultant local yarn strain within the elastic
fabric based on finite element method[ J]. Journal of Materials Sci ̄
enceꎬ 2020ꎬ 55(23): 10258 ̄10270.
[10] 赵书经. 纺织材料实验教程[M]. 北京: 中国纺织出版社ꎬ 1989.
[11] 顾平. 织物组织与结构学[M]. 上海: 东华大学出版社ꎬ 2010.
[12] 周炬. ANSYS Workbench 有限元分析实例详解: 静力学[ M].
北京: 人民邮电出版社ꎬ 2017.
[13] CARVELLI Vꎬ POGGI C. A homogenization procedure for the nu ̄
merical analysis of woven fabric composites[J]. Composites. Part Aꎬ
Applied Science and Manufacturingꎬ 2001ꎬ 32(10): 1425 ̄1432.
[14] DUAN Yꎬ KEEFE Mꎬ BOGETTI T Aꎬ et al. A numerical investiga ̄
tion of the influence of friction on energy absorption by a high ̄strength
fabric subjected to ballistic impact[J]. International Journal of Im ̄
pact Engineeringꎬ 2004ꎬ 32(8): 1299 ̄1312.
[15] 徐燕娜ꎬ 葛明桥. 夜光纤维摩擦与耐磨损性能研究[J]. 针织工
业ꎬ 2008(4): 17 ̄19.
[16] SHEN Yꎬ MEIR A Jꎬ CAO Y Zꎬ et al. Finite element analysis of
monofilament woven fabrics under uniaxial tension[J]. The Journal
of The Textile Instituteꎬ 2015ꎬ 106(1): 90 ̄100.
[17] FREDERICK T P. 5 ̄The geometry of cloth structure[J]. Journal of
the Textile Institute Transactionsꎬ 1937ꎬ 28(3): 45 ̄96.
2021 年第 12 期 65
???????????????????????????????????????????????