第 6 期 苏碧仪等:基于 Segformer 与特征融合的水下养殖鱼类图像分割方法
[4] 胡泽涛. 基于深度学习的鱼类识别研究[D]. 青岛:青岛科技
大学. 2023.
[5] 王柯力. 深度学习在渔业图像识别中的应用研究[D]. 上海:
上海海洋大学,2019.
[6] 汤永华,张志鹏,林森,等. 基于深度学习的鱼类识别相关技
术研究现状及展望[J]. 海洋渔业,2024,46(2):246-256.
[7] GUO P, XUE Z, LONG L R, et al. Cross-dataset evaluation of
deep learning networks for uterine cervix segmentation [ J ].
Diagnostics,2020,10(1):44-60.
[8] 岳有军,耿连欣,赵辉,等. 基于 ARD-PSPNet 网络下的水下
鱼类图像分割算法研究[ J]. 光电子激光,2022,33 ( 11):
1173-1182.
[9] 王红君,季晓宇,赵辉,等. SENet 优化的 Deeplabv3+淡水鱼
体语义分割[J]. 中国农机化学报, 2021, 42(2):158-163.
[ 10 ] LI D, YANG Y, ZHAO S. A fish image segmentation
methodology in aquaculture environment based on multi-feature
fusion model [ J]. Marine environmental research, 2023, 190
(2023):106085.
[11]CHEN Q, WANG X, SHAO F. Underwater image enhancement
based on multiscale residual attention networks[ J]. Journal of
Applied Optics, 2024, 45(1): 89-98.
[12]YU C, FAN X, HU Z, et al. Segmentation and measurement
scheme for fish morphological features based on Mask R-CNN
[J]. Information Processing in Agriculture, 2020, 7 ( 4 ):
523-534.
[13]NEZLA N A , HARIDAS T P M , SUPRIYA M H . Semantic
segmentation of underwater images using UNet architecture based
deep convolutional encoder decoder model [ C] / / International
Conference on Advanced Computing and Communication Systems
(ICACCS),Piscataway, N. J. :IEEE, 2021:28-33.
[14 ] HAN Y, ZHENG B, KONG X, et. al. Underwater fish
segmentation algorithm based on improved PSPNet network[J].
Sensors, 2023,23(19):8072-8089.
[15 ] XU X, QIN Y, XI D, et al. MulTNet: A multi-scale
transformer network for marine image segmentation toward fishing
[J]. Sensors, 2022,22(19):7224-7241.
[16]XIE E, WANG W, YU Z,et al. SegFormer: simple and efficient
design for semantic segmentation with transformers [ J ].
Advances in Neural Information Processing Systems, 2021,34:
12077-12090.
[17] LIN T Y, DOLLAR P, GIRSHICK R ,et al. Feature pyramid
networks for object detection [ C] / / Proceedings of the IEEE
conference on computer vision and pattern recognition, United
States: IEEE Computer Society, 2017:936-944.
[18 ] ZEILER M D, KRISHNAN D, TAYLOR G W, et al.
Deconvolutional networks[C] / / Computer Society Conference on
Computer Vision and Pattern Recognition. Piscataway, N. J. :
IEEE,2010:2528-2535.
[19 ] LI C, GUO C, REN W, et al. An underwater image
enhancement benchmark dataset and beyond [ J ]. IEEE
transactions on image processing, 2019. 29:4376-4389.
[20]SALEH A, LARADJI I H, KONOVALOV D A,et al. A realistic
fish-habitat dataset to evaluate algorithms for underwater visual
analysis[J]. Scientific Reports,2024,10:14671-14681.
[21]FISHER R,SHAO K T,CHENBURGER Y H. Overview of the
fish4knowledge project [ J]. NameIntelligent Systems Reference
Library,2016,104:1868-4394.
[22]CUTTER G, STIERHOFF K, ZENG J. Automated detection of
rockfish in unconstrained underwater videos using haar cascades
[C] / / Winter Conference on Applications of Computer Vision
Workshops, Piscataway, N. J. : IEEE,2015:57-62.
[23]袁志祥,高永奇. InternDiffuseDet:结合可变形卷积和扩散模
型的目标检测方法[ J]. 计算机工程与应用,2024,60(12):
203-215.
[24]覃学标,黄冬梅,宋巍,等. 基于目标检测及边缘支持的鱼类
图像分割方法[J]. 农业机械学报,2023,54(1):280-286.
[25]LIN T Y, GOYAL P, GIRSHICK R,et al. Focal loss for dense
object detection [ J]. IEEE Transactions on Pattern Analysis&
Machine Intelligence,2017,99:2999-3007.
[26]LI X, SUN X, MENG Y,et al. Dice Loss for Data-imbalanced
NLP Tasks[C] / / Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, New York:
Association for Computational Linguistics,2020:465-476.
[27]ZHU W T, HUANG Y F, ZENG L,et al. Anato ‐ myNet:deep
learning for fast and fully automated whole-volume segmentation
of head and neck anatomy[ J]. Medical Physics,2019,46( 2):
576-589.
[28] YURTKULU S, SAHIN Y, UNAL G. Semantic segmentation
with extended deeplabv3 architecture [ C] / / Signal Processing
and Communications Applications Conference, Piscataway, N.
J. :IEEE, 2019:1-4.
[29]ZHAO H, SHI J, QI X, et al. Pyramid Scene Parsing Network
[C] / / Conference on Computer Vision and Pattern Recognition
(CVPR), Piscataway, N. J. :IEEE, 2017:6230-6239.
[ 30 ] RONNEBERGER O, FISCHER P, BROX T. U-Net:
convolutional networks for biomedical image segmentation[C] / /
International Conference on Medical Image Computing and
Computer-Assisted Intervention, Heidelberg: Springer-Verlag,
2015:234-241.
[31 ] SUN K, XIAO B, LIU D, et al. Deep high-resolution
representation learning for human pose estimation [ C ] / /
Conference on Computer Vision and Pattern Recognition
(CVPR),Piscataway, N. J. : IEEE, 2019:5686-5696.
89