·462· 2023年第 43卷
化工环保
ENVIRONMENTAL PROTECTION OF CHEMICAL INDUSTRY
材料中的光生电子具有足够的负电位驱动Cr(Ⅵ)还
原为Cr(Ⅲ)。
3 结论
a)利用水热反应在超薄纳米片Ti 3C2上原位
生长Cu-ZIS复合微球,合成出Cu-ZIS/MX复合材
料。复合材料中的Cu主要以单质铜的形式存在,
但含量较低;复合材料对可见光的吸收性能较ZIS
显著提升。
b)得益于Cu的掺杂提高了载流子密度和电荷
传输效率以及其直接还原Cr(Ⅵ)的性能,1%CuZIS复合光催化剂在60 min内对Cr(Ⅵ)的去除率可
达69.5%,高于ZIS的44.3%。
c)引入Ti3C2后,复合材料的强界面作用有效
延长了光生载流子的寿命,使得最佳配比的1%CuZIS/MX5光照60 min后拥有对Cr(Ⅵ)近100%的去
除率。1%Cu-ZIS/MX5具有良好的循环稳定性,经
5次循环后仍具有较高的光催化性能,且结构未发
生改变。
参 考 文 献
[1] LIANG J L,HUANG X M,YAN J W,et al. A
review of the formation of Cr(Ⅵ) via Cr(Ⅲ) oxidation in soils and groundwater[J]. Sci Total Environ,
2021,774:145762.
[2] KARIMI-MALEH H,AYATI A,GHANBARI S,et
al. Recent advances in removal techniques of Cr(Ⅵ)
toxic ion from aqueous solution:a comprehensive
review[J]. J Mol Liq,2021,329:115062.
[3] 王允东,王孝文,朱紫燕,等. 水中Cr(Ⅵ)还原技
术的研究进展[J]. 化工环保,2022,42(6):661 -
668.
[4] XIA Z N,SHI B F,ZHU W J,et al. Temperature-
responsive polymer-tethered Zr-porphyrin MOFs encapsulated carbon dot nanohybrids with boosted visible-light
photodegradation for organic contaminants in water[J].
Chem Eng J,2021,426:131794.
[5] ZHANG G P,WU H,CHEN D Y,et al. A mini-
review on ZnIn2S4-Based photocatalysts for energy and
environmental application[J]. Green Energy Environ,
2022,7(2):176 - 204.
[6] XING F S,YU H,CHENG C C,et al. Interfacial
microenvironment-regulated cascade charge transport in
Co6Mo6C2-MoO2-CoNC@ZnIn2S4 photocatalyst for
efficient hydrogen evolution[J]. Chem Eng J,2022,
450(Part 2):138130.
[7] SOLANGI N H,MAZARI S A,MUBARAK N M,
et al. Recent trends in MXene-based material for
biomedical applications[J]. Environ Res,2023,
222:115337.
[8] SOLANGI N H,MUBARAK N M,KARRI R R,et
al. Advanced growth of 2D MXene for electrochemical
sensors[J]. Environ Res,2023,222:115279.
[9] 国家环保局科技标准司. 固体废物 六价铬的测定 二
苯碳酰二肼分光光度法:GB/T 15555.4—1995[S].
北京:中国标准出版社,1996.
[10] QIN J Z,HU X,LI X Y,et al. 0D/2D AgInS2/MXene
Z-scheme heterojunction nanosheets for improved
ammonia photosynthesis of N2
[J]. Nano Energy,
2019,61:27 - 35.
[11] ALHABEB M,MALESKI K,ANASORI B,et al.
Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chem
Mater,2017,29(18):7633 - 7644.
[12] CAO S W,SHEN B J,TONG T,et al. 2D/2D
Heterojunction of ultrathin MXene/Bi2WO6 nanosheets
for improved photocatalytic CO2 reduction[J]. Adv
Funct Mater,2018,28(21):1800136.
[13] WEI Z X,GU Z X,ZHANG Y C,et al. Phase-separated
CuAg alloy interfacial stress induced Cu defects for
efficient N2 activation and electrocatalytic reduction
[J]. Appl Catal B,2023,320:121915.
[14] OU M,LI J K,CHEN Y Z,et al. Formation of
noble-metal-free 2D/2D ZnmIn2Sm+3(m = 1,2,3)/
MXene Schottky heterojunction as an efficient
photocatalyst for hydrogen evolution[J]. Chem Eng
J,2021,424:130170.
[15] LUKATSKAYA M R,MASHTALIR O,REN C E,
et al. Cation intercalation and high volumetric capacitance
of two-dimensional titanium carbide[J]. Science,
2013,341(6153):1502 - 1505.
[16] LIU C,ZHANG Y L,WU J X,et al. Ag-Pd alloy
decorated ZnIn2S4 microspheres with optimal Schottky
barrier height for boosting visible-light-driven hydrogen
evolution[J]. J Mater Sci Technol,2022,114:81 -
89.
[17] PAN J W,GUAN Z J,YANG J J,et al. Facile fabrication of ZnIn2S4/SnS2 3D heterostructure for efficient
visible-light photocatalytic reduction of Cr(Ⅵ)[J].
Chin J Catal,2020,41(1):200 - 208.