2023年第8期 WUHAN
FINANCE
的风险信息不仅对未来市场价格信息具有边际的预
测能力,还是风险预警能力的主要来源。
综合而言,相比于传统的因子分析方法,本文利
用分位数因子分析方法构建的尾部风险因子不仅在
风险监测预警效率上具有优势,还具有时效性、更新
频率快等特点,使其更加适应数字金融时代下隐蔽
性更高、传播速度更快的风险特征,有助于金融监管
机构实现系统性金融风险的早识别、早预警、早发
现、早处置。■
注 释
① 根据上证指数的峰谷值计算,2015年股灾开始于2015年
6月12日,结束于2016年1月27日。
[参考文献]
[1] ILLING M,LIU Y. Measuring Financial Stress in a Devel‐
oped Country:An Application to Canada[J]. Journal of Finan‐
cial Stability,2006,2(3):243-265.
[2] HOLLO D,KREMER M,LO DUCA M. CISS-A Compos‐
ite Indicator of Systemic Stress in the Financial System[R]. Eu‐
ropean Systemic Stress Board Working Paper,2012.
[3] CARDARELLI R,ELEKDAG S,LALL S. Financial Stress
and Economic Contractions[J]. Journal of Financial Stability,
2011,7(2):78-97.
[4] BALAKRISHNAN R,DANNINGER S,ELEKDAG S,et
al. The Transmission of Financial Stress from Advanced to
Emerging Economies[J]. Emerging Markets Finance and Trade,
2011,47(sup2):40-68.
[5] 陶玲,朱迎.系统性金融风险的监测和度量:基于中国金
融体系的研究[J].金融研究,2016(6):18-36.
[6] 清华大学国家金融研究院金融与发展研究中心课题组.
中国系统性金融压力的监测[J].国际金融研究,2019(12):
3-12.
[7] 范云朋.我国系统性金融风险监测与度量研究:基于ES‐
RB-CISS研究方法[J].经济问题探索,2020(11):157-171.
[8] 杨子晖,陈雨恬,陈里璇.极端金融风险的有效测度与非
线性传染[J].经济研究,2019(5):63-80.
[9] BENOIT S,COLLIARD J E,HURLIN C,et al. Where the
Risks Lie:A Survey on Systemic Risk[J]. Review of Finance,
2017,21(1):109-152.
[10] JORION P. In Defense of VAR[J]. Derivatives Strategy,
1997,2(4):20-23.
[11] ARTZNER P,DELBAEN F,EBER J M,et al. Thinking
Coherently[J]. Risk,1997,10:68-71.
[12] BALI T G,THEODOSSIOU P. A Conditional-SGT-VaR
Approach with Alternative GARCH Models[J]. Annals of Oper‐
ations Research,2007,151(1):241-267.
[13] KRATZ M,LOK Y H,MCNEIL A J. Multinomial VAR
Backtests:A Simple Implicit Approach to Backtesting Expected
Shortfall[J]. Journal of Banking & Finance,2018,88:393-407.
[14] ACHARYA V V,PEDERSEN L H,PHILIPPON T,et
al. Measuring Systemic Risk[J]. The Review of Financial Stud‐
ies,2017,30(1):2-47.
[15] 赵进文,张胜保,韦文彬.系统性金融风险度量方法的比
较与应用[J].统计研究,2013(10):46-53.
[16] 方意,赵胜民,王道平.我国金融机构系统性风险测度:
基于 DGC- GARCH 模型的研究[J].金融监管研究,2012
(11):26-42.
[17] HUANG X,ZHOU H,ZHU H. A Framework for Assess‐
ing the Systemic Risk of Major Financial Institutions[J]. Jour‐
nal of Banking & Finance,2009,33(11):2036-2049.
[18] BROWNLEES C T,ENGLE R F. SRISK:A Conditional
Capital Shortfall Measure of Systemic Risk[J]. The Review of
Financial Studies,2017,30(1):48-79.
[19] 梁琪,李政,郝项超.我国系统重要性金融机构的识别与
监管:基于系统性风险指数SRISK方法的分析[J].金融研究,
2013(9):56-70.
[20] 陈湘鹏,周皓,金涛,等.微观层面系统性金融风险指标
的比较与适用性分析:基于中国金融系统的研究[J].金融研
究,2019(5):17-36.
[21] ADRIAN T,BRUNNERMEIER M K. CoVaR[J]. The
American Economic Review,2016,106(7):1705-1741.
[22] 吴金宴,王鹏.哪些因素影响了股市风险传染?来自行业
数据的证据[J].中国管理科学,2022(8):57-68.
[23] CHEN L,DOLADO J J,GONZALO J. Quantile Factor
Models[J]. Econometrica,2021,89(2):875-910.
[24] SU J B,LEE M C,CHIU C L. Why Does Skewness and
the Fat-Tail Effect Influence Value-At-Risk Estimates? Evi‐
dence from Alternative Capital Markets[J]. International Re‐
view of Economics & Finance,2014,31:59-85.
[25] HAN H,LINTON O,OKA T,et al. The Cross-Quantilo‐
gram:Measuring Quantile Dependence and Testing Direction‐
al Predictability Between Time Series[J]. Journal of Economet‐
rics,2016,193(1):251-270.
[26] MAGHYEREH A,ABDOH H. Time–Frequency Quan‐
tile Dependence Between Bitcoin and Global Equity Markets
[J]. The North American Journal of Economics and Finance,
2021,56:101355.
[27] 杨子晖,李东承.系统性风险指标是否具有前瞻性的预
测能力?[J].经济学(季刊),2021(2):617-644.
[28] 方意.前瞻性与逆周期性的系统性风险指标构建[J].经
济研究,2021(9):191-208.
[29] 孟庆斌,张永冀,汪昌云.中国股市是宏观经济的晴雨表
吗?基于马氏域变模型的研究[J].中国管理科学,2020(2):
13-24.
[30] 曹志广,王安兴,杨军敏.股票收益率非正态性的蒙特卡
罗模拟检验[J].财经研究,2005(10):34-41+52.
[31] 桂文林,韩兆洲,潘庆年.POT模型中GPD“厚尾”性及金
融风险测度[J].数量经济技术经济研究,2010(1):107-118.
[32] 沈根祥,邹欣悦.已实现波动GAS-HEAVY模型及其实
证研究[J].中国管理科学,2019(1):1-10.
[33] ANDO T,BAI J. Quantile Co- Movement in Financial
Markets:A Panel Quantile Model with Unobserved Heteroge‐
neity[J]. Journal of the American Statistical Association,2020,
115(529):266-279.
[34] KOENKER R. Quantile Regression[M]. Cambridge Univer‐
sity Press,2005.
[35] 潘莉,徐建国.A股个股回报率的惯性与反转[J].金融研
究,2011(1):149-166.
[36] ZHANG Y,MA F,ZHU B. Intraday Momentum and
Stock Return Predictability:Evidence from China[J]. Econom‐
ic Modelling,2019,76:319-329.
(责任编辑:GW / 校对:XY)
40