张斯童,等:基因敲除技术在微生物代谢途径改造中的研究进展
吉林农业大学学报 Journal of Jilin Agricultural University
design to enhance (R,R)-2,3-butanediol production from
glycerol in Bacillus subtilis based on flux balance analysis[J].
Microbial Cell Factories,2021,20(1):196.
[51] Deng C, Lü X, Liu Y, et al. Metabolic engineering of Cory⁃
nebacterium glutamicum S9114 based on whole-genome se⁃
quencing for efficient N-acetylglucosamine synthesis[J].
Synth Syst Biotechnol,2019,4(3):120-129.
[52] Peng Y W, Jin H X. Effect of the pat, fk, stpk gene knockout and mdh gene knock-in on mannitol production in Leuco⁃
nostoc mesenteroides[J]. J Microbiol Biotechnol,2018,28
(12):2009-2018.
[53] Zhou D, Jiang Z, Pang Q, et al. CRISPR/Cas9-assisted
seamless genome editing in Lactobacillus plantarum and its
application in N-Acetylglucosamine production[J]. Appl En⁃
viron Microbiol,2018,34(10):154.
[54] Liu L, Redden H, Alper H S. Frontiers of yeast metabolic en⁃
gineering: diversifying beyond ethanol and Saccharomyces
[J]. Curr Opin Biotechnol,2013,24(6):1023-1030.
[55] Nevoigt E. Progress in metabolic engineering of Saccharomy⁃
ces cerevisiae[J]. Microbiol Mol Biol Rev,2008,72(3):
379-412.
[56] Xue T, Liu K, Chen D, et al. Improved bioethanol produc⁃
tion using CRISPR/Cas9 to disrupt the ADH2 gene in Saccha⁃
romyces cerevisiae[J]. World J Microbiol Biotechnol,2018,
34(10):154.
[57] Guo F, Dai Z, Peng W, et al. Metabolic engineering of Pi⁃
chia pastoris for malic acid production from methanol[J]. Bio⁃
technol Bioeng,2021,118(1):357-371.
[58] Kim M, Park B G, Kim E J, et al. In silico identification of
metabolic engineering strategies for improved lipid produc⁃
tion in Yarrowia lipolytica by genome-scale metabolic model⁃
ing[J]. Biotechnol Biofuels,2019,12:187.
[59] Van Bogaert I N, Sabirova J, Develter D, et al. Knocking out
the MFE-2 gene of Candida bombicola leads to improved
medium-chain sophorolipid production[J]. FEMS Yeast
Res,2009,9(4):610-617.
[60] Lacerda M P, Oh E J, Eckert C. The model system Saccharo⁃
myces cerevisiae versus emerging non-model yeasts for the
production of biofuels[J]. Life (Basel), 2022,9,10:
818445.
[61] Matsushika A, Hoshino T. Increased ethanol production by
deletion of HAP4 in recombinant xylose-assimilating Saccha⁃
romyces cerevisiae[J]. J Ind Microbiol Biotechnol,2015,42
(12):1623-1631.
[62] Lee J J, Crook N, Sun J, et al. Improvement of lactic acid
production in Saccharomyces cerevisiae by a deletion of ssb1
[J]. J Ind Microbiol Biotechnol,2016,43(1):87-96.
[63] Liu J, Zhang X, Liu G, et al. A cumulative effect by
multiple-gene knockout strategy leads to a significant in⁃
crease in the production of sophorolipids in Starmerella bom⁃
bicola CGMCC 1576[J]. Front Bioeng Biotechnol,2022,
10:818445.
[64] Cui Z, Gao C, Li J, et al. Engineering of unconventional
yeast Yarrowia lipolytica for efficient succinic acid production
from glycerol at low pH[J]. Metab Eng,2017,42:126-133.
[65] Wei L, Liu J, Qi H, et al. Engineering Scheffersomyces sti⁃
pitis for fumaric acid production from xylose[J]. Bioresour
Technol,2015,187:246-254.
[66] He J, Deng J, Zheng Y, et al. A synergistic effect on the pro⁃
duction of S-adenosyl-L-methionine in Pichia pastoris by
knocking in of S-adenosyl-L-methionine synthase and
knocking out of cystathionine-beta synthase[J]. J Biotech⁃
nol,2006,126(4):519-527.
[67] Wosten H. Filamentous fungi for the production of enzymes,
chemicals and materials[J]. Curr Opin Biotechnol,2019,
59:65-70.
[68] Bills G F, Gloer J B. Biologically active secondary metabo⁃
lites from the fungi[J]. Microbiol Spectr,2016,4(6):4-6.
[69] Mishra N C,Tatum E L.Non-Mendelian inheritance of DNAinduced inositol independence in Neurospora[J]. Proc Natl
Acad Sci,1973,70(12):3875-3879.
[70] Geiser E, Przybilla S K, Friedrich A, et al. Ustilago maydis
produces itaconic acid via the unusual intermediate transaconitate[J]. Microb Biotechnol,2016,9(1):116-126.
[71] Becker J, Hosseinpour T H, Gauert M, et al. An Ustilago
maydis chassis for itaconic acid production without byproducts[J]. Microb Biotechnol,2020,13(2):350-362.
[72] Behera B C. Citric acid from Aspergillus niger: A comprehen⁃
sive overview[J]. Crit Rev Microbiol, 2020, 46(6):
727-749.
[73] Chroumpi T, Makela M R, de Vries R P. Engineering of pri⁃
mary carbon metabolism in filamentous fungi[J]. Biotechnol
Adv,2020,43:107551.
[74] Ruijter G, van de Vondervoort P, Visser J. Oxalic acid pro⁃
duction by Aspergillus niger: an oxalate-non-producing mu⁃
tant produces citric acid at pH 5 and in the presence of man⁃
ganese[J]. Microbiology,1999,145:2569-2576.
[75] Lee M H, Bostock R M. Agrobacterium T-DNA-mediated in⁃
tegration and gene replacement in the brown rot pathogen
Monilinia fructicola[J]. Curr Genet,2006,49(5):309-322.
[76] Huang X, Men P, Tang S, et al. Aspergillus terreus as an in⁃
dustrial filamentous fungus for pharmaceutical biotechnology
[J]. Curr Opin Biotechnol,2021,69:273-280.
[77] Xu Y, Zhou Y, Cao W, et al. Improved production of malic
acid in Aspergillus niger by abolishing citric acid accumula⁃
tion and enhancing glycolytic flux[J]. ACS Synth Biol,
2020,9(6):1418-1425.
[78] Yang L, Henriksen M M, Hansen R S, et al. Metabolic engi⁃
neering of Aspergillus niger via ribonucleoprotein-based
CRISPR-Cas9 system for succinic acid production from re⁃
newable biomass [J]. Biotechnol Biofuels, 2020, 13
(1):206.
[79] Schlupen C, Santos M A, Weber U, et al. Disruption of the
SHM2 gene, encoding one of two serine hydroxym ethyltrans⁃
ferase isoenzymes, reduces the flux from glycine to serine in
Ashbya gossypii[J]. Biochem J,2003,369:263-273.
[80] Gu S, Li J, Chen B, et al. Metabolic engineering of the ther⁃
mophilic filamentous fungus Myceliophthora thermophila to
produce fumaric acid [J]. Biotechnol Biofuels, 2018,
11:323.
185